Boxing Humanoid Robot

Jin Han Lee, Carlos Nieto, Michael Novitzky

Abstract—In 2008, Nao robots played soccer for the first
time in Robocup in Suzhou, China. This robots are developed
to play soccer and for entertainment (e.g. dancing, interacting
with children). This report presents that using different motion
planning methods (e.g. inverse kinematics, RRTs, potential fields),
allows this robot to do more complicated tasks like boxing. The
main challenge is to deal with the constraints of the robot’s
hardware to accomplish fighting tasks such as punching as faster
the robot can to his opponent.

Index Terms—motion planning, boxing, Nao robot.

I. INTRODUCTION

OXING is one of the simplest and oldest combat sports

where two participants fight each other with their fists
until one of them is knocked unconscious. Is supervised by
a referee and is typically engaged in during a series of one
to three-minute intervals called rounds. Victory is achieved if
the opponent is knocked down and unable to get up before
the referee counts to ten seconds (a Knockout, or KO) or if
the opponent is deemed too injured to continue (a Technical
Knockout, or TKO). If there is no stoppage of the fight before
an agreed number of rounds, a winner is determined either by
the referee’s decision or by judges’ scorecards. [1]

Over the last years, In the last 6 years, fighting robots
has become one of the most popular activities for hobbyist
roboticist in the world. This work addresses the problem to
change a robot designed to play soccer into a boxing robot.

A. Physics behind boxing: Contact with the Goal

The fist has its maximum velocity when it hits something[2].
This collision causes the fist to slow down, and eventually
when the fighter begins applying a force to retract his arm, the
fist stops and returns to the fighter. This speed is calculated
using; Velocity = % As you can see, there are two
ways to make a fist go faster:

1) By lengthening the distance or shortening the time. The
distance can be lengthened to a maximum of the fighter’s
arm length, but the time will depend on training, and the
acceleration (acceleration = %) of the arm.

2) Calculating the momentum and impulse of the arm and
fist of the fighter where the momentum (P) can be seen
as an object’s tendency to resist change in acceleration
P = mxv. An impulse (I) is the change in momentum
of a certain object.

= / Ft)

I= / dp 2)
College of Computing

School of Interactive Computing
Georgia Institute of Technology

I'=Ap 3)

B. Punch steps

1) Before the fist makes contact with the face, it has a
certain momentum, and a stationary head would have
Zero momentum.

2) During the contact, there is a transfer of momentum from
the fist and arm to the head of the opponent.

3) Although momentum is conserved when looking at both
boxers, just looking at the person taking hit, his/her mo-
mentum has changed from zero, to what ever momentum
was transferred from the fist.

A faster punch can be more effective because with the mass of
the fist being constant, by increasing velocity, the momentum
that the punch carries is larger, hence, but change in momen-
tum that the opponent’s head experiences increases.

II. RELATED WORK

In [3], Moissec et al. proposed software that be used to gen-
erate an optimal trajectory kicking motion for the Humanoid
robot HPR-2. Using a dynamic model of the robot incluiding
static friction and the hardware constraints of the motors and
the reduction ratio, they calculate an optimal motion obtained
and some characteristics of the process of motion generation.

III. MOTION PLANNING FOR ROBOT BOXING

A. Collision Detection

Collision detection was performed by the V-COLLIDE:
Accelerated Collision Detection for VRML library and imple-
mented in the RST framework. With each iteration, the planner
is given an object collision list. A function was designed
to detect either a collision with the defending head or the
defending torso and one of either the attacking limb types,
either the arm of the robot starting from the elbow to the tip
or the leg consisting of the shin and foot.

B. Forward Kinematics

Forward kinematics was calculated using Mathematica for
each joint starting from the base of where each limb attached
to the torso. Thus, each arm began at the shoulder joint
and each leg began at the hip joint. The forward kinematic
transformation matrices were hard coded into the planner using
the full simplify equations. The planner then only required
the current joint angle configuration in order to estimate the
current cartesian coordinates.

C. Inverse Kinematics

The inverse kinematics [4], [S]were calculated using an
underconstrained Jacobian method. Underconstrained because
only the cartesian location was calculated and not the ori-
entation of the end effector. Utilizing Mathematica', each
Jacobian matrix was calculated by differentiating each x,y
and z equation with respect to each joint from the forward
kinematic transformation matrices. The Jacobian matrix was
then hard coded into the system and only required input of
the angle configuration for each end effector to begin the
inverse kinematics. Because of system limitations the psuedo-
inverse was used calculated using Single Value Decomposition
utilizing the GSL? mathematics library.

It is known that this is not the most efficient method to
calculate the inverse Jacobian yet the researchers felt that
continuing progress into other domains for the planner was the
most effecient use of the limited time. In order to minimize
singularities the end effectors were limited from reaching joint
values that would cause problems by simply not executing
those joint commands. Additionally, if the inverse Jacobian
method resulted in joint commands that went beyond their
limits they were also ignored yet those commands that did
not violate joint limitations were allowed to pass. This ensured
that forward progress continued and the end effector would not
get stuck in a singularity and kept the system more realistic.
The inverse kinematics were used for all of the motions of the
Nao humanoid.

The most basic implementation of our planner simply
required the end effector location, determined with forward
kinematics, and the target limb centroid such as the head
or the torso. The planner would then iterate in small deltas
in cartesian coordinates, 0.0005, in a straight line from end
effector start location to goal location until either the end
effector ran out of 5,000 iterations, or a collision between
the end effector and the target limb was detected.

zdif f = target, — attackLimb, 4)
ydif f = target, — attackLimb, (5)
zdif f = target, — attackLimb, (6)

distance = \/zdif f2 + ydif f2 + zdif f2 (7
AN, = (zdif f /distance) * jacobianStepSize (8)
Ay = (ydif f/distance) * jacobianStepSize 9)

A, = (zdif f /distance) * jacobianStepSize

(10)

I'Wolfram Research, Inc., Mathematica, Version 6.1, Champaign, IL (2008).
2The GNU Scientific Library (GSL) is a numerical library for C and C++
programmers. It is free software under the GNU General Public License.

D. Potential Fields

A goal of this project is to have an attacking robot score
points against a defending robot, obstacles were determined to
be the arms of the defending robot Thus, potential fields were
utilized for obstacle avoidance. This method allows the planner
to avoid a defender’s blocking arms. In order to simplify the
problem a potential field is created only using the XZ-plane
(Figure 1) of the world using the Y value of the attacking end
effector to make a slice of the world.

Figure 1. 3D World Axis.

Each end effector was determined to be a 3D line in the
world starting from the elbow joint to the end effector. If a
plane intersects with a defending arm’s line segment then an
obstacle point is created. An obstacle point has a radius of 0.08
and the repelling force from within the radius of —cos© or
—sin © depending whether it was the z or x axis calculation.

This first radius (Figure 2), is used to repel an end effector
with a great amount of force becuse if a blocking and attacking
end effector were within 0.08 of their centroids then a collision
is sure to happen as it is an estimate of the widest part of two
arms side by side.

Figure 2. Potential Field

A second sphere around an obstacle is created to gently
guide an attacking end effector around a blocking arm. Thus,
if an attacking arm was within 0.10 or 0.08 then a repelling
force R as calculated in Eq 11 is placed on the end effector
trajectory.

R = —1/distance® * obstacle©® (11)

As an attacking arm gets closer and closer to the defending
arm the repelling force grows more and more until it actually
makes contact with the blocking arm and is repelled with a
great force. A target limb centroid is projected onto the XZ-
plane regardless of its Y height in the world which means the
end effector is constantly drawn to the target with a force of
cos(goalTheta) or sin(goalTheta).

AAXvobstacle + AAngoal

AX = (12)
VAXZ+ NZ?
AT — AZobstacle + AZgoal (13)

VAXZ 4+ NZ2

The AY is calculated exaclty the same as in the methods
above for the straight line jacobian method. Thus, at each time
step, obstacle and goal points are created on an XZ-plane slice.
The forces are summed as vectors and these x and z deltas
are then input into the Jacobian to perform inverse kinematics.
This allows an attacking robot limb to avoid a blocking arm
and still score a point.

E. Maximizing Impact of Punching

As one of our goal through this paper is to deliver possible
maximum force to an opponent through maximizing momen-
tum of a moving end effector at the contact to the opponent.
Solutions generated from the previous section using IK alone
and IK with Potential Field contains too many waypoints due
to small jacobian step size Az. Executing such a solution fails
to maximize the impact of motion on a target. In this section,
we propose to meet the need of our goal a post processing step
taking two steps: extracting feature waypoints among many
waypoints and interpolating between feature waypoints.

Reducing the number of waypoints is important due to two
main factors. Firstly, it is not efficient for robot controllers to
follow fine grained waypoints. Controlling with high accuracy
is costly expensive. Secondly, there is no much of space to
increase the momentum of the end effector. A controller should
handle a few waypoints along the path trajectory so that it can
accelerate the end effector by properly interpolating between
waypoints.

FE. Extracting Feature Waypoints

Under the constraint that the end effector should avoid
obstacles such as an opponent’s blocking arms and legs, we
define feature waypoints as the minimum number of waypoints
that should be kept to avoid obstacles along the path trajectory.
The method for extracting feature waypoints works as shown
in Figure 3.

We looked through the generated path in reverse order from
the goal. Initially, the goal waypoint is pushed onto a stack
and is labeled as the reference waypoints. We retrieve the next
waypoint and check if a robot can move from the reference
waypoint to the retrieved waypoint without collisions. If so,
then we retrieve the next one and perform the same reference
to retrieved waypoint collision checking. We continue doing
this procedure until a collision occurs, at which point we
push back on the stack the last retrieved waypoint, which was

(a) Initial solution after applying (b) Starting from Goal looking in
Potential Field reverse order

(c) Re-starting from the waypoint (d) finding three feature waypoints
last successfully connected to the
goal

Figure 3. Feature Waypoints Extraction

successfully extended from the reference waypoint without
collisions. At this point, we treat the last waypoint pushed
onto the stack as our reference waypoint. We keep iterating this
procedure until the retrieved waypoint is the initial waypoint.
After finishing this procedure, waypoints in the stack is
actually feature waypoints.

G. Interpolating between Waypoints

Once obtaining feature waypoints through the previous
section, interpolation between those waypoints are necessary
to control momentum of the moving end effector. We use two
different cubic Bezier curves, curve type A and curve type B,
as shown in Figure 4, for interpolation between two waypoints.

(a) Type A. Accelerate fast and slow (b) Type B. Accelerate slowly and

down at end maximize at end

Figure 4. Cubic Bezier Curves
We chooses a simple strategy to choose which curve type

is used for interpolation. Curve type A is used to reach from
one waypoint to other in such a stable manner that it reduces

the momentum of the end effector. Curve type B is used to
cover the opposite case, maximizing the momentum. We uses
curve type B for every interpolation except for interpolation
between last two waypoints. The final planned motion is as
shown in Figure 5. We emprically found two control points
for each curve type.

Figure 5. Final Planned Motion

Once deciding a curve type for interpolation between feature
waypoints, we calculate how much time should be to taken
to execute each interpolated motion between two waypoints.
To make our interpolation realistic, we put a constraint that
robot’s each joint motor has the maximum velocity limitation,
10 degree per 20ms in our case. This means that if any of
robot joints tries to exceed that limitation, it need to be sub-
interpolated. We make sure that this does not happen by doing
linearly re-interpolated.

H. Step and Strike

The ultimate goal of this project was to optimize the
momentum of an attacker’s punch. A key idea in this approach
is that if we can increase the mass and velocity that we
will increase the momentum. The next step after accelerating
just an end effector during the motion plan is to include
the movement of the whole body during a strike. This was
partially achieved through keypoint positions of the Center of
Mass (COM) of the torso throughout a stepping motion and a
punch being executed as the robot transferred its COM from
one leg to another in a forward motion. Unfortunately, due
to time constraints the stepping motion followed by a punch
was only achieved using the inverse Jacobian method without
acceleration. Thus, testing of increased acceleration was not
possible and left as future work.

IV. EXPERIMENTS

All of the implementation and testing of our system was
performed in the RST framework provided by Dr. Stilman. In
order to test the effectiveness of our acceleration methodology
we tested the straight punch and the obstacle avoidance punch
using the potential field without any acceleration. The next
step was then to test both the straight punch and the obstacle
avoiding punch using our acceleration method which removed
the unnecessary waypoints and interpolated the keyway points.

As shown in the table I, it is clear that only using the
Jacobian method and a very small step size of 0.0005 results
in very weak momentum upon impact with the straight unac-
celerated punch producing 6.194 g*m/s and the unaccelerated
potential field punch producing 6.538 g*m/s. This small step
size significantly reduces the velocity of the arm links from
one step to another.

The small Jacobian step size is utilized because a criteria of
the planner is that it produce stable waypoints along the path
to the target. It is not difficult to predict that making the step
size larger will increase the momentum yet it would lead to a
greater chance of instability. However, removing unnecessary
waypoints after a stable path has been created is a logical next
step in increasing the momentum of an attacking end effector.
Once unnecessary waypoints are removed, the final step in
the procedure is the interpolation of the required waypoints
so that the joint maximum velocity of 10° every 20ms is not
violated thus keeping the integrity of the system intact. As can
be seen by the results, the removal of unnecessary waypoints
and the interpolation of the trajectory in order to reach the
maximum velocity does increase the momentum producing
33.1979 g*m/s for the straight punch and 41.6244 g*m/s for
the potential field driven punch.

Figure 6. Nao Boxing Simulation

There remains much room for improvement of this planner.
First of all, this planner is not complete because it has a
maximum Jacobian iteration value of 1,000. This means that
a solution may exist for an end effector to reach its target
yet the planner will stop iterating and return a failure. It is
difficult to determine if our algorithm is optimal. Based on
our momentum maximization requirement, true momentum
maximization will be achieved if more distance can be created
by the planner between the attacking end effector and the
target.

However, this implementation only searches for solutions
decreasing the distance to the target thus making it not optimal.
This algorithm is also not efficient in that it uses a very small
jacobian step size of 0.0005 in order to increase the stability
of the solutions. A more efficient manner would be to analyze
the stability of the inverse Jacobian given a large step size
and then reduce the step size until a stable inverse Jacobian

is found thus reducing the number of steps required to find
a solution. Additionally, using LU Decomposition would be a
more efficient manner of solving the inverse Jacobian. Clearly,
there is room for much improvement in the implementation of
this planner.

[Punching Motion [Momentum (kg*m/s) | # waypoints]
Straight 0.00619446 136
Straight w/Bezier Curve 0.0331979 2
Straight w/PF 0.000650383 351
Straight w/Bezier Curve and PF 0.0416244 6

Table 1

COMPARISON OF MOMENTUM

V. DISCUSSION

In order to implement to make a robot capable of boxing,
capability of avoiding obstacles and increasing impact of
punching are necessary. Benefits of using potential field for
obstacle avoidance are many folds. Two dimensional potential
field we implemented works in continuous working space so
that there is no need of discretizing the space and computa-
tionally cheap. The well known problem of the potential field
is being fallen into local minima. In our case, during punching
the end effector does not move forward and backward between
obstacles.

If we solved inverse kinematics in the analytical way, we
could have used RRT (Rapidly Exploring Randomized Tree)
to implement obstacle avoidance. A given target pose in the
working space is transformed and represented in joint space
using IK. By using RRTs we think that the solution to the
target could be generated faster than our current method.

As a future work, we would like to attach any of physics
engines to the simulation so that dynamics of a robot will
be taken into account to generate punching and walking
motions. Currently the user controls attacking limb and target.
In addition, we would like to extend our implemention such
that the user only commands a target and the planner chooses
which attacking limb to use and which target point to hit.

REFERENCES

[1] “Boxing,” 2008, encyclopaedia Britannica.

[2] “Physics behind boxing,” http://class.phys.psu.edu/p001projects/.

[3] K. K. A. Miossec, S. Yokoi, “Development of a software for motion
optimization of robots - application to the kick motion of the hrp-2
robot,” in IEEE International Conference on Robotics and Biomimetics,
Kunming, China, 2006.

[4] H. Choset, K. M. Lynch, S. Hutchinson, G. A. Kantor, W. Burgard, L. E.
Kavraki, and S. Thrun, Principles of Robot Motion: Theory, Algorithms,
and Implementations. MIT Press, June 2005, iSBN 0-262-03327-5.

[S] M. V. Mark W. Spong, S. Hutchinson, Robot Modeling and Control. John
Wiley and Sons, Inc., 2005.

