
Information Scarce Maze Solving

Kane Bonnette and Stephen Hilber

Abstract— Since its inception, the field of planning has been
concerned with pathfinding. Many methods for pathfinding
require a great deal of information about the space to be
explored. However, there are other methods that require noth-
ing more than a start and end location. An effective class of
planners that require little starting information are known as
bug algorithms. Bug algorithms have issues with continuous
space in finding appropriate paths; these issues can often
be solved by discretizing the search space. We present an
implemention of this algorithm in a space and results showing
our implementation’s correctness and completeness.

I. INTRODUCTION

There is a strong overlap between the robotics and the
planning communities. One of the areas that these two
fields conspire heavily on is the field of pathfinding, maze
solving, or just movement in general. These two fields have
produced many useful constructs, and we have implemented
an application of some of the most general algorithms to
solve the general problem of pathfinding.

The issue of pathfinding is an important one to many ap-
plications. Shorter paths allow for less time spent traversing
a maze; time is critical in many situations. Shorter paths also
allow for reduced movement costs. The benefits to complete
and efficient pathfinding are quite bountiful.

Many algorithms exist for solving maze-like areas op-
timally. However, these algorithms require complete infor-
mation about the search space (or at least the part of the
search space containing the optimal path). Mapping the area
before solving for a path may be expensive. The data may
not even be available. These algorithms, such as A-star(cite),
while provably complete and optimal, may not be effective
in areas where no information exists. In fact, they may fail
if presented with a lack of data in which to find a solution.

Luckily, there exist algorithms for solving this class of
problem. Some work by using the sight, or other long range
sensors of the robot. However, these algorithms will also
work if the only sensors the robot has access to have a
unit distance from the robot. Even collision sensors will
be sufficient. We plan to use this class of algorithms to
implement our planner.

There are many situations where robots must find paths
without any information. For instance, leading a blind man
out of a burning building hardly leaves time for getting

CS 8803 RIP
K. Bonnette is a Master’s Student of Computer Science, Georgia

Institute of Technology, 800 Atlantic Ave, Atlanta, GA, 30332, USA
kane@gatech.edu

S. Hilber is an Undergraduate Student of Computer Science, Georgia
Institute of Technology, 800 Atlantic Ave, Atlanta, GA, 30332, USA
stephen.hilber@gatech.edu

building blueprints from a government office, and the man
himself cannot give his guide input other than when he
bumps into a wall. Leading animals to a pen by their leash,
pushing a block out of a maze, or retrieving a lost object
from a human-inaccessable area are all good candidates for
a planner of this nature.

For this reason we have taken the step of working to
have a robotic assistant guide or push an object (whether
inanimate or otherwise) out of an obstacle strewn area,
such as a maze or a fallen building. It is our hope that
our implementation will be quick enough to work within
time constraints, effective given limited information, and
applicable to real world robotics.

II. RELATED WORK

There have been many algorithms developed for the task
of path finding. Some of the first co-opted the Classical
Planning structures, such as State Space, Plan Space, or
GraphPlan, which can be solved given a formulation of the
problem domain. However, this class of planners requires
knowing the postconditions of the actions it performs, mak-
ing them heavily suboptimal at forming plans for a space
it knows nothing about. These planners also have the issue
of difficulty in formulating the problem space. While well
suited to logical problems, geometric problems are generally
tedious and/or difficult to formulate for Classical Planning
frameworks.

There are solution frameworks that provide optimal solu-
tion to a path finding, but these algorithms requires knowl-
edge of the problem space. These algorithms include Voronoi
graphs and visibility graphs. Both provide optimal plans (for
differing definitions of optimal; visibility graphs will provide
the shortest distance to the goal, while Voronoi graphs keep
the planner as far away from obstacles as possible).

For algorithms that don’t require knowledge of the prob-
lem space, the A*[1] search algorithm is one of the better
known algorithms. Once supplied a heuristic appropriate to
the domain of the problem, A* is proven to search over a
graph in a best-first order. By using an admissible heuristic,
A* able to achieve optimal performance on any graph it is
applied to - no previous knowledge of the problam space
is necessary. However, A* needs to be applied with an
appropriate heuristic in order to achieve this optimality. For
certain domains that measure success in numbers (such as
distance to goal), this heuristic is trivial to obtain; for other
domains, it may not work as well.

The class of algorithms known as bug algorithms resolves
this problem by using methods to circumnavigate obsta-
cles(cite). The naive algorithm is to move along the edge



of an obstacle until it is no longer obstructing a direct path
to the goal, and then returning to that direct path. Extensions
include mapping the entire object and going to the point of
the object closest to the goal before resuming a direct path
to the goal state. [2]

Many pathing algorithms suffer from an exploding search
space given continuous space. This problem is often solved
by discretizing the search space into a grid, and then explor-
ing that grid at the time [3]. There exist extensions to this
as well, allowing for dynamically resizing the grid squares,
subdividing grid squares, and others [4].

III. METHOD

For our approach, we created a solver that navigates
around obstacles to a goal location for a given start location.
The planner works in two dimensions. We discretize the
workspace into a grid, and make the simplification that each
grid square is only large enough to contain the object being
moved through workspace. We assume squares for our grid
to simplify the solution problem. If an object being moved
through workspace is not square, we form a square of size
length n around the object, where n is the smallest length
that allows us to circumscribe a square around our object.

We make no assumptions about the size of the workspace;
we assume no boundaries exist in the workspace unless we
find a boundary while search for the goal. Therefore, we
do not predetermine a size for out algorithm to explore. We
presume the workspace to be initially empty, and therefore
our algorithm attempts to reach the goal via the most direct
path possible. As we disallow diagonal moves through the
grid, we allow our object to only move one space through the
grid at a time, thereby restricting our possible moves from
any square to up, down, left, and right.

As the object is moved through the workspace, we remem-
ber the space that has been traveled through by creating a
series of nodes. These nodes describe the locations above,
below, and to both sides of the current location, as either
null (unexplored area), open (capable of being entered), or
closed (blocked by some obstacle, i.e. a wall). If we moved
into an unexplored space and find that we are unable to do so,
because out of a collision between the object and anything in
the grid square being moved into, we mark the new square
as closed and return the object to the original square. If in
attempting to move, we encounter no obstacles, we mark the
space we currently occupy as open.

Since the space has been discretized into a regular square
grid, we use the manhattan distance between the object and
the goal location as a heuristic to guide our search. In a effort
to maintain consistency, we always move in the direction
that has a greater distance (e.g., if the Y distance to the
goal is greater than the X distance, we will move in the Y
axis). If both the X and Y distance are the same, we bias
our planner to move in the Y direction first. If an obstacle
is encountered, we attempt to move around it. In moving
around said obstacle, we first attempt to go in the cardinal
direction of less magnitude. If that fails, or is unavailable
(i.e., if there is an obstacle or if we are in line with the goal

in one cardinal direction), we attempt to take the direction
that increases the distance from the goal in the least cardinal
direction. For example, if we are 5 units from the goal in the
X direction and 7 units from the goal in the Y direction, we
will first attempt to go towards the goal in the Y direction,
then towards the goal in the X direction, then away from the
goal in the X direction, and finally away from the goal in
the Y direction. We always attempt to move into unexplored
space, unless there are no unexplored spaces adjacent to our
current location, in which case we move in the direction of
the nearest unexplored space.

Since we do not backtrack unless there are no more paths
to explore, we fully explore any unknown areas and thus will
not miss paths that take us far away from the unobstructed
path. If no free spaces are available, and the goal has not
been found, we conclude that there is no path to the goal,
and the maze is unsolvable. If the maze is solvable, we will
eventually find a path to the goal. If the path to the goal
requires infinite traversal, we will search for a path until
there is no longer enough memory to store new nodes that
have been explored. In this case, we will report the path to
the goal as unsolvable.

Since we fully explore the space, any path to the goal
must be found; our planner is therefore complete. As we
bias our pathfinding to the closest grid space to the goal, we
hopefully take the shortest path to the goal; our planner is
therefore efficient. However, as the shortest path to the goal
may require moving away from the location that minimizes
our distance, (for instance, if we run into an alcove that cuts
us off from the goal), the planner is not necessarily optimal.

IV. EXPERIMENTS

For our experimental runs, we utilized a series of five-by-
five mazes. The mazes are presented below, with information
and statistics related to each maze. For purposes of discus-
sion, the grid starts at space 0,0 in the top left, and goes to
4,4 in the bottom right. This is the same numeration used in
our experiments. Figure one shows the actions taken when
the object moves from start location 4,2 to goal location
0,2. Figure two shows the actions taken when the object
moves from start location 4,2 to goal location 0,2. Figure
three shows the actions taken when the object moves from
start location 2,4 to goal location 2,0. Figure four shows the
actions taken when the object moves from start location 4,2
to goal location 0,2. Figure one shows the actions taken when
the object moves from start location 4,0 to goal location 0,4.
The last state (with object in goal location) is not show in
any figure. In all maps, anything not shown is an obstacle.

V. ANALYSIS

In the empty maze shown in figure 1, the object explored
5 spaces, encountering 5 open spaces and 0 closed spaces. It
took the only optimal path. This demonstrates the correctness
of the algorithm in an empty workspace.

In the single obstacle maze shown in figure 2, the object
explored 8 spaces, encountering 7 open spaces and 1 closed



Fig. 1. An empty workspace

Fig. 2. A workspace with a single obstacle between the start and the goal

space. It took one of two optimal paths. This demonstrates
the correctness of the algorithm in a sparse environment.

In the line obstacle maze shown in figure 3, the object
explored 11 spaces, encountering 9 open spaces and 2
closed spaces. It took one of several optimal paths. This
demonstrates the correctness of the algorithm in a denser
environment.

In the alcove maze shown in figure 4, the object explored
21 spaces, encountering 14 open spaces and 7 closed spaces.
It did not take an optimal path. This demonstrates the ability
of the algorithm to backtrack when necessary.

In the squiggle maze shown in figure 5, the object explored
26 spaces, encountering 17 open spaces and 9 closed spaces.
It took the only optimal path. This demonstrates the ability
of the algorithm to handle feature rich environments.

VI. DISCUSSION

Bug algorithms are fully capable of solving this class of
problems, and can do so quickly. All of our experimental

Fig. 3. A workspace with a line between the start and the goal

Fig. 4. A workspace with a local minima



Fig. 5. A workspace with multiple lines requiring a zig zag to navigate

runs finished in under a second, and none required a human-
noticeable amount of time to solve. We would like to conduct
more experiments with larger test mazes to develop a greater
understanding of the strengths of the algorithm, and provide
a better comparison with other planning methods already in
existence.

Results show that we explored a minimal amount of the
space where possible, and took direct routes as much as
possible. However, due to some errors in backtracking code,
not all paths were optimal. We hope to correct these errors
in future work.

On maps without obstacles, our planner takes the most
direct route to the goal, thus showing its correct bias. If
an obstacle is encountered, it takes the closest path around
the obstacle, coming to the goal in an efficient manner.
However, since it has no idea which side of an obstacle
to traverse, it sometimes takes longer paths than necessary.
Cases exist where further exploration of the workspace would
have lead to shorter paths, but without prior knowledge of
the workspace there is no way to conclusively establish
the shortest path to the goal. Since our algorithm operates
without any prior knowledge of the environment, we are
unable to make decisions off of any information other than
the feedback we receive from our sensors.

VII. FUTURE WORK

Our first goal of future work is to integrate the planning
engine into a simulator that will allow us to run the planner in
a simulated environment. While test harnesses are excellent
for testing the logic of a planning function, the real world
issues to make such a planner useful are difficult to simulate
without a robot to test with. Simulators provide enough of
a balance between real-world complexity and abstraction of
side issues to accurately demonstrate the performance of the
algorithm.

Once the planner can be shown to work in a simulated
environment, the next natural step will be to integrate
the planner with an actual robot. Robotic arms seem like
the optimal platform for this integration. When dealing
with robotic arms, forward and inverse kinematics must be
computed, and it becomes much more important to tune
features such as collision detection and step size. However,
success integrating our algorithms with a robotic arm would
demonstrate the effectiveness of our planning algorithms in
physical situations and would be a springboard for further
applications.

Another area for future work is to extend the planner to
work in three dimensions instead of the more limiting two
dimensions it currently operates in. Much more interesting
results can be demonstrated with a three-dimensional feature
space. Most problems in the real world also require more
than two dimensions. As the implementation of our work in
a robotic arm would allow us to operate in three-dimensional
space, we can easily pursue both of these goals simultane-
ously.

However, extending the planning to handle three dimen-
sional problem will also cause issues with the robot itself,
not just the object it is moving. In trying to use a robotic
arm to solve three dimensional problems, the links of the
arm itself may have collisions with the workspace obstacles.
Integrating these concerns into the planner will be difficult
but is necessary if we want to produce a viable three-
dimensional solution.

No prior knowledge was assumed in the methodology of
the planner, but knowing something about the workspace can
allow planners to form more efficient plans. Storing maps
as the planner moves through a workspace for use on other
problems in the workspace can speed solutions by precluding
the chance of taking false paths if a route to the goal is
already known. This would also allow the planner to handle
finding multiple goal spaces without having to re-explore the
workspace.

VIII. ACKNOWLEDGMENTS

The authors gratefully acknowledge the instruction and
direction of Dr. Mike Stilman, who made robotics not only
interesting but fun. We would also like to extend our thanks
to Venkat Mahalingam and Jon Scholz for their invaluable
help in debugging in the early hours of the morning.

REFERENCES

[1] R. Dechter and J. Pearl, “Generalized best-first search strategies and
the optimality of a*,” in Journal of the ACM 32, 1985, pp. 505–536.

[2] S. Rajko and S. M. LaValle, “A pursuit-evasion bug algorithm,” in Pro-
ceedings IEEE International Conference on Robotics and Automation,
2001, pp. 1954–1960.

[3] J. Reif and H. Wang, “Non-uniform discretization approximations for
kinodynamic motion planning,” in Algorithms for Robotic Motion and
Manipulation, J.-P. Laumond and M. H. Overmars, Eds. Wellesley,
MA: A.K. Peters, 1997, pp. 97–112.

[4] U. Fayyad and K. Irani, “Multi-interval discretization of continuous-
valued attributes for classification learning,” in JPS TRS 1992+, 1993.


