
A framework for vision-guided trajectory generation with a 7 DOF
robot arm

Jonathan Scholz, Venkata Subramanian, and Arun Kumar Elangovan

Project Report - Robot Intelligence - Planning in Action
Faculty Adviser: Mike Stilman

Abstract— This paper describes the development of a soft-
ware architecture for visually-guided workspace control on a 7
degree-of-freedom manipulator. Beginning with hardware and
low-level drivers for the arm, a force sensor, a camera, and a
6-axis mouse, we produced a system capable of tracking and
capturing small autonomous mobile robots [3]. The project
demonstrates the core capability requirements forworkspace
control, visual object recognition & tracking, and tactile feedback,
all in a modular framework that allows shared state information
and structured cooperation between independent components.

I. I NTRODUCTION

The primary goal of this project was the development
of a control and perception framework for investigating
affordance discovery. As currently envisioned, a research
program affordance learning will involve tracking sets of
visual features as the arm interacts with objects in its
workspace. The core features then necessary include a means
of controlling the arm in workspace coordinates, processing
some form of visual data, and reacting to forces experienced
during interaction. This experiment serves to combine visual
& tactile data for motion planning, and illustrate the benefits
of a cooperative modular architecture. The challenge is to
track and capture mobile robotic cockroaches [Figure 1]
while avoiding damage to the arm, target, or environment.
Robot “cockroaches”, or HexBugsTM , were acquired from
RadioShack. These robots are equipped with a pair of metal
touch sensors in the position of antennae that allow it to stop
and turn when it encounters obstacles. A simple stage for the
experiment was constructed that bounded the navigable space
of the HexBugs with wooden blocks. This apparatus provided
an environment with a predictable set of dynamics which was
ideal for the development of the software architecture for the
Schunk arm. The goal for the experiment was to visually
track the HexBugs after releasing them into the workspace,
to apply the proper velocities to the 7 joint motors in the
arm to converge upon the bug, and finally capture it with a
small plastic cup affixed to the end of the arm.

II. RELATED WORK

Several other research projects in the area of affordance
learning with robot manipulators have used a basic research
apparatus like the one described here. Each of these projects
share a need for workspace control, tactile feedback, and
some form of visual perception. In a project aimed at
autonomously discovering object kinematics, Brock et. al.
employ a single robot arm equipped with a force sensor,

Fig. 1. RadioShack HexbugTMModel 60-206, seen under Schunk end-
effector equipped with plastic trapping cup

connected to an overhead camera for sensing changes to
objects in the workspace [6]. Stoytchev [8] also makes use
of an overhead camera and a force-sensitive gripper while
investigating tool affordances with a 5 DOF manipulator. It
is our goal to merge this work in affordance discovery with
recent developments in computer vision on more sophisti-
cated representations of the affordance to visual feature re-
lationship. In his graduate thesis, Sun [9] describes a system
for probabilistically relating visual features to categories of
traversability affordances. His system naturally dependson
relatively sophisticated environment sensing, and we view
this project as a step towards that goal.

III. M ETHODS

Tracking and capturing the mobile HexBugs required
two types of environment sensing. First and foremost, the
system needed a visual object tracking system to report the
coordinates of the target as it moved. Image data of the
workspace was acquired with a Logitech Orbit webcam [4],
and processed with the open-source vision library OpenCV
[7] running on Ubuntu Hardy. Tactile data was acquired using
a National InstrumentsTMmodel NI-6224 [5] data-acquisition
device captured with the open-source linux driver Comedi
[2].

A. Object tracking

HexBugs were tracked using OpenCV’s camShift function,
which tracks based upon a hue histogram of an image
subregion [1]. This simple approach is nevertheless quite



Fig. 2. Object tracking using camShift. Left panel shows outline of tracked
HexBug. Right panel shows centerpoint transmitted as ASCII text over
TCP/IP socket

robust when used on objects that, like the HexBugs, have
a unique color profile compared to other objects in the
scene. Tracking the HexBugs with camShift and OpenCV
was performed as follows:

Initialization:

1) Grab a frame from the camera stream
2) convert frame to HSV, filtering out the range specified

by value and saturation thresholds1

3) select a subregion of the image that contains the object
of interest (and as little else as possible)

4) set a tracking-box for the object centered on the
selected region

5) use selection to create a mask image (used in tracking)
6) calculate a hue histogram of the ROI

Tracking:

1) capture a new frame from the camera stream
2) convert frame to HSV using previous filter values
3) backproject the histogram - use the histogram assign

probability values by color to pixels in the image
4) call camShift - starting at previous object location,

search backprojection for center of highest probability

Trajectory estimation:

1) calculate a displacement vector describing movement
over the past 10 iterations of tracking

2) multiply this vector by a scaling constant, set based
upon the reaction speed of the arm

3) add this vector to current position, and draw on current
frame

4) transmit head of trajectory vector across TCP socket

Communication & Calibration

After identifying the centerpoint of the HexBugs in
pixel coordinates, the next step was to convert these
values to workspace coordinates and transmit this
information to the arm controller. Since the object
tracker and arm controller ran on a separate computers,
communication between these machines required a
network communication layer running on both the
object trackingserver and theclient motion planner.

1camshift and meanshift work poorly at low values (dark colors), and
through trial and error I settled on a conservative value of 80 out of 256

Fig. 3. Trajectory estimate, calculated across past 10 iterations and scaled
based on arm reaction time. Green line represents estimate of where to
intercept bug

a) Communication: For the purpose of both flexibility
and scalability, TCP/IP was used for communication
between machines, implemented using a lightweight
custom socket library. The object tracking server was
configured to transmit centerpoint coordinates, in pix-
els, as ASCII values to the client machine [Figure 2].
This information was then parsed for values represent-
ing the pixel location of the target, which was then
processed for workspace goal parameters.
b) Calibration v1 - Homography: Given visual in-
put from the camera TCP interface, the system must
convert the pixel coordinates representing the target
location to the workspace frame of the robot. In the
first solution to this problem a simple homography was
performed to calculate the relationship between pixel
and workspace positions. As camera was mounted at a
slightly oblique angle (from overhead), the conversion
factor was calculated independently for the two axes. A
tele-operation module was used to move the arm about
the workspace boundaries to find the coordinates of
four pennies placed at the corners. The object tracker
was then used to find the pixel values for the four
pennies. We then manually found the linear function
for each of the axes that produced valid workspace
positions from pixel coordinates.
c) Calibration v2 - RPY interpolation: While the
homography provided a means of directing the arm
about the workspace following motions of the target,
it left out an explicit way of altering the other 4
parameters of the workspace goal. This proved to be a
significant limitation, as the roll, pitch, and yaw were
left fixed to whatever initial values the end-effector
had when tracking began. Thus, the algorithm which
calculated the inverse kinematics could only solve for
the workspace positions featuring those roll, pitch,
and yaw parameters, thereby limiting the accessible
workspace of the arm. At a minimum, a method was
needed to interpolate roll, pitch, and yaw values from X
and Y positions. We devised a solution to this problem,
however, that had the added benefit of producing a



simple procedure for specifying the desired behavior
of the arm as it moved about the workspace. Using
a similar calibration procedure as above, we set up a
matrix of equations for solving all 5 of the parameters
of interest (Z solved independently) as a function of
both X and Y. The calibration process then involved
simply obtaining the pixel and workspace coordinates
for the 4 (or n) number of points of interest, arranging
the matrices, and solving the system of equations in
Matlab to produce the calibration matrix. It was this
method that allowed us to specify a more vertical
effector position at nearby positions than extended po-
sitions simply through training with the teleop controls.
This solution also allowed us to move the camera to
arbitrary positions and quickly and accurately generate
a new calibration matrix.

B. Tactile feedback

Force-feedback at the end-effector of the arm is both
an important safety feature and a valuable source of
information for a controlling the arm. The force-torque
sensor equipped at the end of the arm reports values
for displacement and rotation about each of the three
principle axes (x,y,z,roll,pitch,yaw). Using libcomedi,
the force-torque module was configured to poll the
sensor at 1 KHz. These data were made available to the
two primary arm controllers to provide a force-based
safety cutoff and a method for active compliance when
the arm runs into obstacles.

IV. CONTROL SYSTEM ARCHITECTURE

At a minimum, controlling the arm in workspace
coordinates requires a mechanism to accept six-
dimensional workspace coordinates, translate to seven-
dimensional joint values, and write the output to a
bus connected to the arm. The proposed system for
autonomous manipulation and affordance learning is
expected to feature several independent components,
arranged in a hierarchy, which issue commands to the
arm. In addition, after interfacing a six-dimensional
mouse to the arm it became apparent that a modular
architecture with preemptible commands was highly
desirable. For these reasons, the framework put in
place for HexBug-tracking segregated the problem into
six independent modules [Figure 4]. These modules
communicate using POSIX shared memory for IPC.
This allows multiple control processes to update a
shared resource, where authorization can be managed
based on standard Unix permissions.

A. Jointspace control

Low-level communication with the arm was carried
out over a CAN bus using modified driver code from
Schunk, based on the NTCAN API. The jointspace
controller provided a single memory interface for writ-
ing reference velocities for the seven modules of the
arm. The control loop interfaced with the force-sensor

at 1KHz, using reference values and the current arm
position to set the joint velocity of each module. If
force exceeded a set threshold the velocity gains were
set to zero.

B. Workspace control

The majority of the planning and control for the arm
concerned the position of the end-effector in workspace
coordinates. To accomplish workspace control, we
implemented an algorithm to compute the analytical
inverse-kinematics of the arm using two wrist points
for the six axes, and constrained the 7th (elbow joint)
to have the opposite orientation of the end-effector.
Reference positions for the end-effector were read from
shared memory and translated to desired joint values,
after applying an offset derived from the instantaneous
readings from the force-sensor.

C. force-torque API

Translation and rotation values were read from the NI-
6224 device using an interface to libcomedi. These
values were maintained in a shared memory buffer and
updated at 1 KHz.

D. object tracker

Due to the system load for capturing frames from
the webcam and running camShift, visual tracking of
the HexBug was run on a separate machine. After
initializing the tracker and connecting all clients, the
centerpoint of the HexBug was transmitted over a TCP
socket to the machine controlling the arm.

E. tele-operation

The first demonstration of workspace control on the
arm used a six-dimensional mouse with axes mapped
directly to the six axes of the end effector. This read
workspace coordinates from shared memory, polled
the axes of the mouse, and updated the workspace
reference point with these displacements.

F. HexBug-Catcher

Packets from the object tracker were collected on the
controller machine and parsed for position values of
the HexBug. These values were then translated from
pixel coordinates to workspace coordinates and written
to the shared memory location for the workspace
reference point.

G. Performance

After releasing a bug onto the workspace, the arm
was able to successfully maneuver its end effector
to hover over the same x,y coordinate in real-time
[Figure 10]. Due to an unresolved conflict between
the CAN bus and the NI-6224 drivers, the arm is not
currently able to use force-torque feedback to capture
the bug. In addition, the object tracker fails when the
arm occludes the bug, and a workaround involving
trajectory extrapolation has not been implemented yet.



Fig. 4. Schematic of the control architecture. Includes six modules for
the bug-tracking experiment and an additional mechanism for manually
specifying workspace goal coordinates

Fig. 5. Experimental observations for ’red’ colored bug

Despite these shortcomings, the arm has consistently
been able to maintain an end-effector velocity to match
the bug, and we expect a solution to the remaining
issues in the near-term.
comparison of different targets: Since there is not
much planning involved the experiments were devised
to test the computational complexity or completeness
or optimality of the algorithms. Rather they were
devised to check the time taken and efficiency of bug
tracking and accuracy of the vision code. There were
no special experimental set-up rather the bug was let
to move around in the workspace and the time taken
by the robot to capture it was recorded. This was done
for five trials for a bug and the entire procedure was
repeated for four different colored bugs for testing the
integration of vision code and the robot controller code.
[Figure 5,6,7,8]
1) CAN communication speed: We profiled the com-
munication and command execution part of the arm.
We calculated the time it take from starting to send
the first CAN message, the arm executing those com-
mands, till the time it takes to recieve the last ac-
knowledgement. We did this profiling in the regu-
lar controller, where all the modules are active and
commands are sent to all modules. We write the
commands to the driver asynchronously and read back
the acknowlegement through in blocking mode. We

Fig. 6. Experimental observations for ’green’ colored bug

Fig. 7. Experimental observations for ’black’ colored bug

operated the arm at a baudrate of 1000 (1Mbps),
the highest the arm can support. We observed the
following results. Here each value corresponds to the
time it takes to write the commands, the commands
to be executed and the acknowledgements to be ob-
tained from the modules. min: 1681.8699999999999
max: 2406.7800000000002. avg: 1844.798365999998.
These values were calculated over 10000 data points
[Figure 9].

H. Discussion & future directions

Currently, the method we use to calculate the distance
between the bug and the arms’s end effector is as
follows: we first calculate the joint space configuration
of where the end-effector should be (goal position) to
catch the bug and its current joint space configuration.
We then calculate the euclidian distance between these
two to find the remaining distance. But, we still need to
figure out a method for calculating the goal configura-
tion and current configuration in workspace. This will
help us in cases where we need to track multiple bugs

Fig. 8. Experimental observations for ’violent’ colored bug



Fig. 9. CAN module communication/execution timing

Fig. 10. Still image of robot arm converged on the x,y coordinate of
a HexBug while moving in the workspace. Capture with the plastic cup
pending resolution of conflict between NTCAN and Comedi

at the same time. Workspace configuration will be a
more correct estimate of finding the closest bug in this
case, as jointspace configuration distance between the
end effector and all bugs is not equivalent to workspace
configuration distances.

a) : We also need to work on calculating trajectories
in jointspace configuration. This will help us move
between current jointspace position and goal jointspace
position which are far apart while maintaining a con-
sistent velocity throughout the path and help us move
the arm in a predictable fashion. Otherwise, the arm
could take a trajectory which might go through the
table and thus making it collide with the table. Right
now, we avoid it by making the arm’s position in the
workspace configurations that it will be in to be high
enough to make it not hit the table and reduce it only
when we are sure of it catching the bug in the process.

b) : The vectors of the forces as sensed by the force
sensor at the end effector is currently independent
of the orientation of the end effector. We need to
transform one to the other so that the arm can back
out in the direction opposite to the direction of the
force experienced irrespective of its orientation.
c) : Right now, we send velocity commands to the
arm to control it. This only indirectly controls the arm
as the commands are internally processed by a velocity
controller which applies a present damping to the arm.
But, sending velocity commands helped us to quickly
move on to the other parts of the project. We need to
write a controller which controls its motion in terms of
torque by controlling the current passing through each
of the modules.

REFERENCES

[1] J.G. Allen, R.Y.D. Xu, and J.S. Jin. Object tracking using
CamShift algorithm and multiple quantized feature spaces. In
Proceedings of the Pan-Sydney area workshop on Visual in-
formation processing, pages 3–7. Australian Computer Society,
Inc. Darlinghurst, Australia, Australia, 2004.

[2] comedi.org. Comedi - linux control and measurement device
interface. http://www.comedi.org, [Accessed: 11/2008].

[3] HexBug Inc. Hexbug micro robotic creature.
http://www.hexbug.com, [Accessed: 11/2007].

[4] Logitech Inc. Logitech orbit webcam.
http://www.logitech.com/index.cfm/webcamcommunications/orbit,
[Accessed: 09/2007].

[5] National Instruments Inc. National instruments ni-
6224. http://sine.ni.com/nips/cds/view/p/lang/en/nid/14134,
[Accessed: 06/2008].

[6] D. Katz and O. Brock. Extracting Planar Kinematic Models
Using Interactive Perception. InRSS Robot Manipulation
workshop. Springer, 2007.

[7] opencv.org. Opencv - computer vision library.
http://sourceforge.net/projects/opencvlibrary/, [Accessed:
11/2008].

[8] A. Stoytchev. Behavior-Grounded Representation of Tool Af-
fordances. InRobotics and Automation, 2005. Proceedings of
the 2005 IEEE International Conference on, pages 3060–3065,
2005.

[9] J. Sun. Object Categorization for Affordance Prediction.


