
Comparison of Techniques for Stabilization of a Triple Inverted
Pendulum

Erik Lee and James Perkins

Abstract— We present a comparison of a LQR controller
and Q-learning on a simulation of a triple inverted pendulum.
While the LQR controller was able to balance the pendulum, Q-
learning was unable due to memory and computing limitations.
We examine the strengths and weaknesses of each method and
compare their abilities.

I. INTRODUCTION

The balancing of a triple inverted pendulum [Figure 1]
is an important problem in robotics because it mimics the
human body and its balancing mechanisms. While most
solutions are quite primitive compared to an actual human,
there has been some progress in relation to this issue as
humanoid robots are becoming more popular for military,
care and other applications.

Fig. 1. Schematic of triple inverted pendulum

In this paper, two methods of controlling the triple inverted
pendulum in simulation are used and compared. An contin-
uous LQR controller is compared to a state-based discrete
Q-learning system. It will be shown that the LQR controller
is able to balance the pendulum given certain constraints,
while Q-learning was unsuccessful due to system constraints.
Both methods, however, may be valid with more work.
First, the model of the triple inverted pendulum will be
described, followed by the LQR controller implementation.
The Q-learning implementation then follows, and the paper
concludes with a discussion on the merits of each method.

II. SYSTEM MODEL
A mathematical model for a triple inverted pendulum

can be derived using the Lagrange differential equations.
As shown in Figure 1, the pendulum of concern is pinned
and non-actuated on the first link. For purposes of linear
control and state space matrix representation, the nonlinear
model of a triple inverted pendulum was linearized by
removing all nonlinear terms and implementing a small
angle approximation for the sine function. The linearized

differential equation is
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and table 1 displays the values represented by each of the
variables.

TABLE I
TRIPLE INVERTED PENDULUM SYSTEM PARAMETERS

Symbol Value
l1 110(mm)
l2 170(mm)
l3 160(mm)
h1 70(mm)
h2 90(mm)
h3 80(mm)
m1 1.9(kg)
m2 0.467(kg)
m3 0.292(kg)
I1 9.6x10−4(kg −m2)
I2 6.8x10−4(kg −m2)
I3 4.1x10−4(kg −m2)
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and plugging in the parameter values for the physical system,
the state space representation of the dynamic system is
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with and representing the motor torques for the second and
third pendulum, respectively.

III. CONTROLLER DESIGN

Stabilization of an inverted pendulum is a classical control
problem that is often used to gauge the quality of a controller.
Extensive research in the controls field has shown on multiple
occasions that a Linear Quadratic Regulator (LQR) is well
suited for inverted pendulum stabilization[6][5]. Hence, a
first approach is to implement an LQR control scheme to
stabilize the triple inverted pendulum.

The basic idea behind an LQR controller is to minimize
a cost function. Given a state space model of the system

ẋ = Ax + Bu (4)

where x variable is a matrix representing the system states
and the u variable is a matrix containing the control inputs.
In this situation, the control input is defined by the equation

u = −kx (5)

such that the K variable, a gain matrix, scales the system
states to generate an input signal. For this type of controller,
the cost function is generally defined as

J =
∫ ∞

0

(xT Qx + uT Ru)dτ (6)

where Q and R represent weighting matrices. The Q and R
matrices are required to be positive definite matrices and in
this case are selected to be diagonal matrices[1]. It is clear
from the cost function that the diagonal weighting matrices
specify how much consideration each state and input is given.
That is, a large valued Q matrix and small valued R matrix
mean that the changes in the state matrix will be amplified
as compared to the changes in the input matrix.

In order to implement an LQR controller, one must se-
lect appropriate weighting matrices. For the triple inverted
pendulum model, several different weighting matrices were
selected and tested. As a first approach, the elements of the Q
matrix were selected to be much larger than the elements of
the R matrix. This selection translates into a controller that
is more sensitive to the states of the system than the control
input. The logic behind this choice is that the main design
criterion is stability and therefore the system states dictate
stability. In foresight, one should expect that this could lead
to actuator saturation, since minimal weighting is given to
the input values. A first set of tests showed that this stabilized
the linearized model of a triple inverted pendulum [Figure
2]. As shown in Figure 3, the base LQR controller is able to
stabilize the system when a disturbance input of 1o is applied

Fig. 2. System response with initial LQR controller

Fig. 3. Dependence of maximum displacement on Q matrix values

to θ3. Further testing showed that the LQR controller could
stabilize the system for disturbances of 2o and 9o for θ2

and θ3, respectively . It should be noted that disturbances
with magnitudes greater than this will cause the system to
oscillate outside the 20o limit, and therefore invalidate the
small angle approximation.

Although stabilization of the system has been achieved,
there are a number of reasons to extend the capabilities of
the controller. First, it is likely that in actual application,
the pendulum displacement may exceed the limits stated
above. Therefore, extensive tuning of the controller must
be performed in order to maximize the stability range of
the controller. Second, up to this point the simulations
have been run without the inclusion of noise. On a real
system, noise is unavoidable. The inclusion of noise will
only act to destabilize the system. Hence this is a second
reason to tune the controller. Since LQR controllers don’t
have tunable parameters that directly correlate to meaningful
system parameters, it is a relevant first approach to attempt
to understand how the tunable parameters affect the system



response.
This was performed by holding each of the Q matrix

values constant, varying the remaining Q value, and then
measuring the output. Small initial angular displacements
were given to the system to force some control effort to
be input. Instead of recording the actual output signal, the
maximum angular displacement was recorded. This was done
because the main mandatory design criterion was to stay
within the region where the small angle approximation holds.
Therefore, recording the maximum displacement, as opposed
to the entire signal, better quantifies the stability with respect
to this criterion. For these tests, the Q matrix was defined as

Q =


Q1 0 0 0 0 0
0 Q1 0 0 0 0
0 0 Q1 0 0 0
0 0 0 Q1 0 0
0 0 0 0 Q1 0
0 0 0 0 0 Q1

 (7)

where each of the Q values inside the Q matrix were varied.
The tests were performed by holding R constant at the iden-
tity matrix and setting each of the values to 1. The remaining
Q value in the Q matrix was then varied individually while
holding the other Q values at 1. This allows one to quantify
how each entry in the Q matrix individually affects the max-
imum angular displacement. Figure 3 shows the results from
this test, where the values are normalized by their maximum
value for a given Q value test. The x-axis of the plot shows
the Q values, with the red lines corresponding to varying ,
the blue lines corresponding to varying and the green lines
corresponding to varying . Although the plots in Figure 3
are of little quantitative value, the qualitative significance is
large. Notice in the figure, by looking at the y-axis, that all
of the lines are bounded within 80% of the maximum value.
Also, most of the maximum angular displacements are only
altered by 4% when varying the Q value. This leads to two
conclusions. First, regardless of the Q matrix values, stability
will be preserved for small angular displacements. Although,
this is a great attribute, it has a downside. That is, regardless
of the Q matrix values, large angular displacements can not
be overcome. This is true because, if one can not introduce
a control effort large enough to destabilize the system, then
when large displacements are externally input into the system
the controller will not be able to apply a large enough control
effort to stabilize the system.

With this information in mind, the next step was to tune
the LQR controller in order to increase the robustness of the
controller. After much tuning, the gains that produced the
most robust controller, of the ones tested, was a Q matrix
of,

Q =


4 0 0 0 0 0
0 .01 0 0 0 0
0 0 3 0 0 0
0 0 0 .1 0 0
0 0 0 0 .1 0
0 0 0 0 0 .1

 (8)

with the R matrix equal to the identity matrix. Using this
Q matrix, the range was extended to 4o and 14o for θ1

and θ3, respectively. Figure 4 shows a plot of the poles, or
eigenvalues, of the closed loop system. It is evident that
the response of the system will be non-oscillatory since the
imaginary part of all of the poles is zero. Since all of the
real parts of the eigenvalues are negative, the system will
exhibit a stable response. The problematic poles of closed
loop system are shown in the zoomed-in portion of Figure
4. These poles present a problem for a number of reasons.

With respect to implementation, these poles could be

Fig. 4. Poles of closed loop system with LQR controller

shifted on the actual system if the parameter values are
different than the model parameters. The problem with this
is if the poles shift to the right half plane of the real axis
then the system will be unstable. A second problem with
these small negative poles is that they produce a solution
that responds more slowly. That is, the small argument in
the exponential causes the response to be slow with respect
to the more negative poles.

IV. CONTROLLING THE TRIPLE INVERTED PENDULUM
WITH Q-LEARNING

A. Q-Learning Introduction
An important breakthrough in reinforcement learning was

the development of Q-Learning[9]. Q-Learning, an off-policy
temporal-difference algorithm, directly approximates the op-
timal action-value function through basic trial and error. The
robot begins with a predefined set of states and actions with
no knowledge of the best action to take in a given state
in order to reach the goal state. By taking actions from
states (with no knowledge), the robot can accumulate rewards
through reaching the goal or a state that leads to the goal and
punishments by moving to an unwanted state. The Q-learning
algorithm is as follows [8]:



1. Initialize Q(s, a) arbitrarily
2. Repeat (for each episode)
3. Initialize s
4. Repeat (For each step of episode)
5. Choose a from s using a policy
6. Take action a, observe r, s

′

7. Q(st, at)← Q(st, at)+α[rt+1 +γmaxQ(st+1, a)−
Q(st, at)]

8. s←s
′

9. until s is terminal

where Q(st, at) is the state/action pair before taking the
most recent action, α is the learning constant, rt+1 is the
reward function, γ is the discount factor and maxQ(st+1, a)
is the maximum Q-Value (from the Q-Table) in the state
reached after taking the action. Basically, the robot will
initialize the Q Table [Figure 5] and then from its start
state choose an action. The action will then be evaluated
based on the equation in line 7 of the above algorithm. After

Fig. 5. Example basic Q-Table

it is evaluated, a new action will be chosen from the new
state, performed and evaluated. This will be repeated until
either the goal is reached, or a terminal unwanted state is
reached. The robots position will then be reinitialized and
lines 5-8 repeated. With infinite iterations and a policy that
chooses all possible actions from all states (i.e. random), the
algorithm will converge on a solution where each state has an
action with a highest q-value. Although it does not prove the
behavior will be optimal, any optimal behavior requires that
all state-action pairs continue to be updated[8]. Convergence
is also dependent on two factors in the table, the learning
constant and discount factor. The learning constant is a value
between 0 and 1 that describes the level of importance that
is placed on newly acquired rewards. With a higher value,
the robots actions, positive or negative, will highly influence
the current q-values in the table. The discount factor, also a
value between 0 and 1, limits the importance of previously
acquired q-values.

1) General Q-Learning Issues and Related Works: One
of the biggest problems with Q-Learning is the size of the
Q-Table. In a complex system with a large number of states

and actions, the table can become quite large requiring a
large amount of memory for storing the table. While it is
possible to only store the best action for each state when
the learning process is complete, during the learning phase
the entire table must be used until the values converge to a
solution. For a floating point table in C, the size of the table
in bytes is approximately equal to

size = states ∗ actions ∗ 4; (9)

where 4 is the number of bytes for a floating point variable.
As the size of the table increases, so does the time it takes
for the values to converge to the optimal policy. One factor
that affects this is the decision made on which action to
take from a given state. A simple, yet slow solution would
be to randomly choose actions from every state. While this
would explore the entire table in time, a commonly used
method known as ε-greedy has been used [8] which balances
between exploration (i.e. a random choosing of an action)
and exploitation (choosing the action with the highest Q-
value) with 0 ≤ ε ≤ 1. While all actions from all states
will be performed, q-values for actions that already have
been performed will be reinforced. Sutton and Barto showed
that a nonzero ε is usually better than a 0 value, but after a
period of time spent learning, exploration is less important
and the value can be changed to include more exploitation.
Work has been performed to choose the action with the
most value during exploration to improve convergence time.
In [3], Q-value sampling has been used to represent the
agent’s knowledge of the available rewards as probability
distributions. [2] has extended this idea with Myopic-VPI
and Bayesian filtering and has shown for simple systems
an improvement over conventional q-value choice policys.
An overview of this issue and some strategies that have
been used can be seen in Kaelbling, Littman and Moore
[4]. Because of the issue of convergence time, it is often
impossible to perform learning on an actual robot. Learning
is usually performed in simulation and the solution ported
to the robot. Of course, moving from simulation to robot
is a difficult due to the many issues with describing a real,
complex system in a dynamic world in simulation.

Another issue with Q-Learning and reinforcement learning
in general is the reward function. As was described earlier,
the only reward given was for the goal state. This value
would then ”propagate backward” through the table as ac-
tions led to that goal state and actions led to the state that led
to the goal state and so on. The difficulty with this approach,
however, is that it may take a very long time (depending on
the number of states and actions) to actually propagate this
value backwards through the table. It may be more beneficial
to create a proportional reward system that gives rewards or
punishments every time an action is taken from a state based
on the metric of how much the system moved towards the
goal state. The problem that lies with this approach is that the
programmer may be deciding for the system how it should
act from a given state, instead of allowing the system to
decide. It may be beneficial to have a reward system that is
very basic, so that for complex systems (i.e. a robot walking),



the robot can learn how to walk without being constrained
by a possibly flawed human-created reward system.

In general, reinforcement learning is performed with an
immediate state-action-state reward system, but some sys-
tems have used a delayed reward where the agent builds is
Q-table based on a reward that can take place in the future.
These problems are modeled as Markov Decision Processes
[4].

An issue that arises in all system is the problem of
discretizing the states in a manner that adequately describes
the system in order to make the actions worthwhile. Without
enough knowledge of the system, actions can not be properly
chosen to achieve the goal. A sign of possible incomplete
state description would be a lack of convergence of the Q-
Values as well as, of course, inappropriate actions performed
from states in the real system. To solve the problem of dis-
cretization, Zhou et. al. have described an approach entitled
”‘Dynamic Fuzzy Continues-Action Q-learning”’ that works
on continuous domains where the learner has a continuous
perception of the state space and can trigger continues actions
[11].

B. Implementation Description

A classic Q-learning algorithm was followed for attempt-
ing to balance the triple inverted pendulum in this project.
Because of the sin approximation explained earlier in this
paper and to keep the q-learning controller consistent with
the controller described above, each joint in the robot was
only able to move between -20 and 20 degrees. States in the
system are represented by 6 values: θ1, θ2, θ3, V1, V2 and V3

Fig. 6. Schematic of triple inverted pendulum

[Figure 6]. This discretization led to approximately 22 mil-
lion states. Actions consisted of two torque values for the
top two joints for a period of time t. Their minimum and
maximum values were also calculated from tests with the
model and, although inexact, seemed to be reasonable esti-
mates from model input. Initially, 25 actions were created.
The classic learning equation earlier in the paper was used for
updates to the Q-Table, with random actions being chosen
approximately 70 percent of the time. Both a proportional

reward system for every action taken and a reward system
that only gave a reward if the goal was reached were
implemented.

C. Implementation Issues and Discussion

For most of the Q-learning implementation process, only 4
variables were being used to describe a state (θ1, θ2, θ3, V1).
Through intuition, it was found that two more variables were
needed to adequately describe the state. Without V2 and V3,
the top two joints velocities were not taken into account
when performing an action. For example, performing action
X in state Y in an instance with V2 = a might lead us closer
to the goal, but performing that same action in the same
state with V2 = b may make the bottom pendulum move
outside the 20 degree maximum angle. Thus, the state is not
being adequately described because the same action in the
same state could lead to two unrealistically different states,
possibly ruining the Q-table.

When adding in the two extra variables, as mentioned
before, there were approximately 22 million states. With 25
actions and 22 million states, the floating point Q-table was
approximately two gigabytes in size, which was too large
for the memory constraints of the computer. Because of the
time left for the project at the realization of this inadequacy,
we were unable to implement the system on an appropriate
machine or create a multi threaded algorithm.

It is still a concern that the ranges on the states do not
adequately describe the state space in order to balance the
triple inverted pendulum. A one degree range on each θ may
be too large to balance the pendulum. Because velocities
vary greatly when moving up the pendulum and the memory
issues late in our project, we were unable to determine which
velocity range was appropriate for each pendulum link. Also
because of the memory issues, we were unable to determine
absolutely whether our actions were correct for the system.

Although there were memory issues, it still may be nearly
impossible for the Q-Table to converge to a solution with the
large number of states and the current action-selection policy.
Another manner, such as suggested in [4] may be more
appropriate for such a large system, but it is still questionable
as to whether the triple inverted pendulum problem requires
too many states for any reasonable computation time. Since
it is computed off-line, however, it may be possible. More
study would need to be performed to determine this.

Another issue with Q-Learning is that it is difficult to
tune the created controller without recalculating the entire
table. Because of the issue of compute time, this is a
significant problem. Also, when problems arise with the
calculated policy, it can be difficult to determine the reasons
for failure because of the disconnection between the user
created algorithm and the actual learning process. Defining
states and actions are somewhat of an inexact science, yet
still interrelated, compounding the problem of choosing them
correctly. Also, in regards to compute time, multiple values,
such as the learning constant, discount factor and ε can have
a major effect. These values are also chosen based on an
educated guess.



In other work, q-learning and other types of reinforcement
learning has been implemented on inverted pendulums with
some success. Some of this work can be found in [10] and
[7].

D. Q-Learning Conclusion

While Q-learning is an interesting concept, it presents
problems in regards to memory and compute time. These
problems can be worked around, but it may be necessary
to define the state space in an unsatisfactory manner. With
infinite computing power, Q-learning would be a viable
option for a triple inverted pendulum and may still be if
implemented correctly.

E. Comparison of Controller and Q-Learning

Although the Q-learning section this section of the project
was unsuccessful, the process was helpful in determining
the differences in the LQR controller and Q-learning. One
advantage of Q-learning over the LQR controller is that
nonlinear systems are inherently no different than a linear
system in Q-learning. Creating a nonlinear controller can be
a difficult and time consuming task for the engineer, while
the Q-learning programmer can allow the system to design
a controller itself given nonlinearities. Of course, Q-table
convergence time with Q-learning can be very time consum-
ing. The difficulty with this is that if the calculated policy is
incorrect or inoptimal, the policy must be recalculated and
the entire Q-learning process restarted from the beginning.
With a LQR controller, values such as gain are easily and
rapidly tuned once placed on a real system. Another issue
with Q-learning is that the states are discritized. It is possible
that the size of the Q-table could severely cripple the learning
process, while controllers do not have a similar problem.
Also, state discretization may make it difficult to find a set of
actions that can effectively allow the robot to reach the goal
state. Although untested in this process, as mentioned earlier,
work has been performed to create a continuous Q-learning
theory[11]. While Q-learning was unable to balance the
pendulum and the LQR controller was, more work may show
that the Q-learning algorithm, if implemented correctly, can
match the performance of the LQR controller. It may be
beneficial to perform other types of reinforcement learning
such as value iteration to find an optimal policy.
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