
1

9/9/2014S. Joo (sungmoon.joo@cc.gatech.edu) 1

CS 4649/7649
Robot Intelligence: Planning

Sungmoon Joo

School of Interactive Computing

College of Computing

Georgia Institute of Technology

Hierarchical Network Planning

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AAAAAAAAAAAA

*Slides based in part on Dr. Dana S. Nau and Jose Luis Ambite’s lecture slides

9/9/2014S. Joo (sungmoon.joo@cc.gatech.edu) 2

Course Info.

• Course Website: joosm.github.io/RIP2014
• Course Wiki: github.com/RIP2014/RIP2014Wiki/wiki

- add your contact info, start grouping/filling in project ideas, etc.
- pending invitations

• Next Tuesday (Sept. 16)
- IROS @ Chicago

- Substitute video ‘lecture’ on final project

2

9/9/2014S. Joo (sungmoon.joo@cc.gatech.edu) 3

Domain Independent Heuristics

9/9/2014S. Joo (sungmoon.joo@cc.gatech.edu) 4

FF vs. HSP

3

9/9/2014S. Joo (sungmoon.joo@cc.gatech.edu) 5

How to use PDDL for planning problems?

PDDL

• Two files

- A domain file: predicates and actions
- A problem file: objects, initial state and goal specification

(define (domain hanoi-domain)

(:requirements :equality)

(:predicates (disk ?x) (smaller ?x ?y) (on ?x ?y) (clear ?x))

(:action move-disk

:parameters (?disk ?below-disk ?new-below-disk)

:precondition (and (disk ?disk)

(smaller ?disk ?new-below-disk)

(not (= ?new-below-disk ?below-disk))

(not (= ?new-below-disk ?disk))

(not (= ?below-disk ?disk))

(on ?disk ?below-disk)

(clear ?disk)

(clear ?new-below-disk))

:effect (and (clear ?below-disk)

(on ?disk ?new-below-disk)

(not (on ?disk ?below-disk))

(not (clear ?new-below-disk)))))

9/9/2014S. Joo (sungmoon.joo@cc.gatech.edu) 6

How to use PDDL for planning problems?

PDDL

• Two files

- A domain file: predicates and actions
- A problem file: objects, initial state and goal specification

(define (problem hanoi-problem)
(:domain hanoi-domain)
(:objects p1 p2 p3 d1 d2 d3)
(:init (smaller d1 p1) (smaller d2 p1) (smaller d3 p1)

(smaller d1 p2) (smaller d2 p2) (smaller d3 p2) (smaller
d1 p3) (smaller d2 p3) (smaller d3 p3) (smaller d1 d2)
(smaller d1 d3) (smaller d2 d3) (clear p1) (clear p2)
(clear d1) (disk d1) (disk d2) (disk d3) (on d1 d2) (on d2
d3) (on d3 p3))
(:goal (and (on d1 d2) (on d2 d3) (on d3 p1))))

4

9/9/2014S. Joo (sungmoon.joo@cc.gatech.edu) 7

PDDL

• Domain description

(define (domain hanoi-domain)

(:requirements :equality)

(:predicates (disk ?x) (smaller ?x ?y) (on ?x ?y) (clear ?x))

(:action move-disk

:parameters (?disk ?below-disk ?new-below-disk)

:precondition (and (disk ?disk)

(smaller ?disk ?new-below-disk)

(not (= ?new-below-disk ?below-disk))

(not (= ?new-below-disk ?disk))

(not (= ?below-disk ?disk))

(on ?disk ?below-disk)

(clear ?disk)

(clear ?new-below-disk))

:effect (and (clear ?below-disk)

(on ?disk ?new-below-disk)

(not (on ?disk ?below-disk))

(not (clear ?new-below-disk)))))

Domain name

Predicates
Actions

*Requirement flags allow a planner to quickly tell if it is likely to be able to hangle the domain

*Action effects can include universal quantifiers(i.e. forall), conditionals (e.g. when)

Requirements

9/9/2014S. Joo (sungmoon.joo@cc.gatech.edu) 8

PDDL

• Problem description
Problem name

Objects

Initial state

(define (problem hanoi-problem)
(:domain hanoi-domain)
(:objects p1 p2 p3 d1 d2 d3)
(:init (smaller d1 p1) (smaller d2 p1) (smaller

d3 p1) (smaller d1 p2) (smaller d2 p2) (smaller
d3 p2) (smaller d1 p3) (smaller d2 p3) (smaller
d3 p3) (smaller d1 d2) (smaller d1 d3) (smaller
d2 d3) (clear p1) (clear p2) (clear d1) (disk d1)
(disk d2) (disk d3) (on d1 d2) (on d2 d3) (on d3
p3))

(:goal (and (on d1 d2) (on d2 d3) (on d3 p1))))

Goal specification

*domain must match the corresponding domain name

Domain

5

9/9/2014S. Joo (sungmoon.joo@cc.gatech.edu) 9

Summary

PDDL
• Domain
• Problem

9/9/2014S. Joo (sungmoon.joo@cc.gatech.edu) 10

Domain Knowledge for Planning

• For some planning domains you are familiar with, you may already know
preferred ways of solving the planning problems

• Brute-force search over the entire search space vs. Search over a limited
number of ‘recipe’s (i.e. preferred ways of doing something)

e.g. Travel to a destination that is far away
1. Buy a flight ticket from a local airport to a remote airport close to the

destination
2. Travel to the local airport
3. Fly from the local airport to the remote airport
4. Travel to the final destination

Task:

Method: taxi-travel(x,y)

get-taxi ride(x,y) pay-driver

travel(x,y)

Method: air-travel(x,y)

travel(a(y),y)
get-ticket(a(x),a(y))

travel(x,a(x))

fly(a(x),a(y))

6

9/9/2014S. Joo (sungmoon.joo@cc.gatech.edu) 11

Domain Knowledge Transfer

• Control rules:

– Classical planning efficiency often suffers
from combinatorial complexity

– Write rules to prune every action that
does not fit the recipe (i.e. cut the
unpromising nodes)

– Focus on identifying actions not to
consider (i.e. actions that need to be
pruned)

• Hierarchical Task Network(HTN):

– Describe the actions and subtasks that
do fit the recipe

– Focus on identifying actions and tasks to
consider

– HTN methods are applied only when the
preconditions are met

Two Approaches

9/9/2014S. Joo (sungmoon.joo@cc.gatech.edu) 12

Problem Reduction

• Problem reduction

– Capture hierarchical structure of the domain

– Planning domain contains non-primitive actions and schemas for reduction

: Methods to decompose tasks into subtasks (given by the design)

– Tasks (activities) rather than goals

– Enforce constraints: preconditions, task orders

• E.g., taxi not good for long distances travel

– Backtrack, if necessary

Task:

Method: taxi-travel(x,y)

get-taxi ride(x,y) pay-driver

travel(x,y)

Method: air-travel(x,y)

travel(a(y),y)
get-ticket(a(x),a(y))

travel(x,a(x))

fly(a(x),a(y))

7

9/9/2014S. Joo (sungmoon.joo@cc.gatech.edu) 13

Problem Reduction

• Problem reduction

– Capture hierarchical structure of the domain

– Planning domain contains non-primitive actions and schemas for reduction

: Methods to decompose tasks into subtasks (given by the design)

– Tasks (activities) rather than goals

– Enforce constraints: preconditions, task orders

• E.g., taxi not good for long distances travel

– Backtrack, if necessary

Task:

Method: taxi-travel(x,y)

get-taxi ride(x,y) pay-driver

travel(x,y)

Method: air-travel(x,y)

travel(a(y),y)
get-ticket(a(x),a(y))

travel(x,a(x))

fly(a(x),a(y))

9/9/2014S. Joo (sungmoon.joo@cc.gatech.edu) 14

Hierarchical Task Network (HTN) Planning

• HTN planning domain

– States(description of the current situation) and operators

– Tasks: Activities to perform [primitive tasks & non-primitive(compound) tasks]

– Methods: Ways to perform the activities, How to decompose compound tasks

May be more than one method for the same task (e.g. taxi & flight)

• HTN planning problem

– Domain

– Initial state

– Initial task network (tasks to accomplish, with some ordering of the tasks)

• HTN planners may be domain-specific or domain-configurable

• Domain-configurable HTN planner

– Domain – independent planning algorithm

– Domain – states, operators, tasks, and methods

– Planning problem – domain, initial state, initial task network

8

9/9/2014S. Joo (sungmoon.joo@cc.gatech.edu) 15

• A special case (simplified version) of HTN planning: Totally/Partially ordered

• State(list of ground atoms) and operator

– The same as in classical planning

• Task

– Two kinds of task symbols (and tasks):

• primitive: tasks that we know how to execute directly

– task symbol(name) is an operator name

• non-primitive(compound): tasks that must be decomposed into subtasks

– use methods

• Plan: Sequence of ground primitive tasks (operators)

Simple Task Network (STN) Planning

*term: variable, constant, function expression

9/9/2014S. Joo (sungmoon.joo@cc.gatech.edu) 16

• A special case (simplified version) of HTN planning: Totally/Partially ordered

• State(list of ground atoms) and operator

– The same as in classical planning

• Task

– Two kinds of task symbols (and tasks):

• primitive: tasks that we know how to execute directly

– task symbol(name) is an operator name

• non-primitive(compound): tasks that must be decomposed into subtasks

– use methods

• Plan: Sequence of ground primitive tasks (operators)

Simple Task Network (STN) Planning

*term: variable, constant, function expression

Definition (Task)

A task is an expression of the form t(r1,r2,…,rk)

where t is a task symbol (operator symbol for primitive task or a method

symbol for compound task), and r1,r2,…,rk are terms.

9

9/9/2014S. Joo (sungmoon.joo@cc.gatech.edu) 17

Primitive Task (Operator)

Task:

Method: taxi-travel(x,y)

get-taxi ride(x,y) pay-driver

travel(x,y)

Method: air-travel(x,y)

travel(a(y),y)
get-ticket(a(x),a(y))

travel(x,a(x))

fly(a(x),a(y))

• Directly executable task. Primitive task is achieved by applying an operator

get-taxi (a:Agents, x:Locations)

– Pre:

– Eff: loc(taxi)  x

ride(x:Locations, y:Locations)

– Pre: loc(a) = x, loc(taxi) = x

– Eff: loc(a)  y, loc(taxi)  y, owe(a)  rate(x,y)

pay-driver(a:Agents)

– Pre: owe(a)=r, cash(a)>= r

– Eff: owe(a)  0, cash(a)  cash(a) - r

Method(totally ordered method)

9/9/2014S. Joo (sungmoon.joo@cc.gatech.edu) 18

• Totally ordered method: a 4-tuple
m = (name(m), task(m), precond(m), subtasks(m))

– name(m): an expression of the form n(x1,…,xn)

• x1,…,xn are parameters (variable symbols)

• n is a name of the method (method symbol)

– task(m): a non-primitive task

task that this method could apply to

– precond(m): preconditions (literals)

– subtasks(m): a sequence
of tasks t1, …, tk

air-travel(x,y)

task: travel(x,y)

precond: long-distance(x,y)

subtasks (TO network): buy-ticket(a(x), a(y)), travel(x,a(x)), fly(a(x), a(y)), travel(a(y),y)

• Task Network: TN = ({u1,u2,u3,u4},{(u1,u2),(u2,u3),(u3,u4)} where ∀i, ui=ti
• For totally ordered TN, we usually write TN = < t1,t2,t3,t4 >

travel(x,y)

buy-ticket (a(x), a(y)) travel (x, a(x)) fly (a(x), a(y)) travel (a(y), y)

long-distance(x,y)

air-travel(x,y)
Shows the order plan
will be executed later

t1 t2 t3 t4

10

Method(totally ordered method)

9/9/2014S. Joo (sungmoon.joo@cc.gatech.edu) 19

• Totally ordered method: a 4-tuple
m = (name(m), task(m), precond(m), subtasks(m))

– name(m): an expression of the form n(x1,…,xn)

• x1,…,xn are parameters (variable symbols)

• n is a name of the method (method symbol)

– task(m): a non-primitive task

task that this method could apply to

– precond(m): preconditions (literals)

– subtasks(m): a sequence
of tasks t1, …, tk

air-travel(x,y)

task: travel(x,y)

precond: long-distance(x,y)

subtasks (or network): buy-ticket(a(x), a(y)), travel(x,a(x)), fly(a(x), a(y)), travel(a(y),y)

• Task Network: TN = ({u1,u2,u3,u4},{(u1,u2),(u2,u3),(u3,u4)} where ∀i, ui=ti
• For totally ordered TN, we usually write TN = < t1,t2,t3,t4 >

travel(x,y)

buy-ticket (a(x), a(y)) travel (x, a(x)) fly (a(x), a(y)) travel (a(y), y)

long-distance(x,y)

air-travel(x,y)
Shows the order plan
will be executed later

Definition (Simple Task Network)
A simple task network is an acyclic digraph W = (U,E), where U is the node set u ∈ U contains a task tu.

and E is the edge set that defines a partial ordering of U, e.g. u≺ v iff there is a path from u to v.

t1 t2 t3 t4

9/9/2014S. Joo (sungmoon.joo@cc.gatech.edu) 20

Methods

Definition (Applicable Method)
A method instance m is applicable in a state s if precond+ (m) ⊆ s and precond- (m)⋂s
=∅ .

Definition (Relevant Method)
Let t be a task and m a method instance, if there is a substitution(of terms) 𝜎 such that
𝜎 (t) = task(m), then m is relevant for t, and the decomposition of t by m under 𝜎 is
𝛿(t,m, 𝜎) = network(m). If m is totally ordered, we may write 𝛿(t,m,𝜎) =subtasks(m).

(Example)
Let t be the non-primitive task move-stack(p1a,q), s the state of the world, and
m be the method instance recursive-move(p1a,p1b,c11,c12). m is applicable to s,
relevant for t under substitution 𝜎 = {q  p1b}, and decomposes

t into:
𝛿(t,m,𝜎) = <move-topmost-container(p1a,p1b),move-stack(p1a,p1b)>

11

9/9/2014S. Joo (sungmoon.joo@cc.gatech.edu) 21

Example: Total-order Formulation

Method(partially ordered method)

9/9/2014S. Joo (sungmoon.joo@cc.gatech.edu) 22

• Partially ordered method: a 4-tuple
m = (name(m), task(m), precond(m), subtasks(m))

– name(m): an expression of the form n(x1,…,xn)

• x1,…,xn are parameters (variable symbols)

• n is a name of the method (method symbol)

– task(m): a non-primitive task

task that this method could apply to

– precond(m): preconditions (literals)

– subtasks(m): a partially ordered set
of tasks {t1, …, tk}

air-travel(x,y)

task: travel(x,y)

precond: long-distance(x,y)

network: ({t1=buy-ticket(a(x),a(y)), t2= travel(x,a(x)), t3= fly(a(x), a(y))

t4= travel(a(y),y)}, {(t1,t3), (t2,t3), (t3 ,t4)})

travel(x,y)

buy-ticket (a(x), a(y)) travel (x, a(x)) fly (a(x), a(y)) travel (a(y), y)

long-distance(x,y)

air-travel(x,y)

12

9/9/2014S. Joo (sungmoon.joo@cc.gatech.edu) 23

• STN planning domain: operators, methods

• STN planning problem: domain, initial state, initial task network

• Solution: any executable plan
that can be generated by
recursively applying

– methods to
non-primitive tasks

– operators to
primitive tasks

nonprimitive task

precond

method instance

s0 precond effects precond effectss1 s2

primitive taskprimitive task

operator instance operator instance

STN Planning: Domain, Problem

9/9/2014S. Joo (sungmoon.joo@cc.gatech.edu) 24

• Solution: any executable plan that can be generated by recursively
applying

– methods to non-primitive tasks

– operators to primitive tasks

STN Planning: Solution (Plan)

Definition (Solution Plan)
Let P = (s0,w,O,M) be a STN planning problem. Then a plan 𝜋 = <a1, …, an> is a solution
for P for the following cases:
Case 1 : w is empty. Then the empty plan 𝜋 = <> is the solution.

Case 2: There is a primitive task node u ∈ w that has no predecessor in w. Then 𝜋 is a
solution for P if a1 is applicable to tu in s0 and the plan 𝜋 = <a2, …, an> is a solution of
the planning problem P’ = (𝛾(s0,a1),w-{u}, O, M)

Case 3: There is a non-primitive task node u ∈ w that no predecessor in w. Suppose
there is an instance m of some method in M such that m is relevant for tu and applicable
in s0 . Then plan 𝜋 is a solution for P if there is a task network w’ ∈ 𝛿(w,u,m,𝜎) such that
𝜋 is a solution for (s0,w’,O,M).

13

9/9/2014S. Joo (sungmoon.joo@cc.gatech.edu) 25

STN Planning: Example

Suppose we want to move three stacks of containers in a way that preserves the
order of the containers

9/9/2014S. Joo (sungmoon.joo@cc.gatech.edu) 26

• A way to move each stack:

– first move the
containers
from p to an
intermediate
pile r

– then move
them from
r to q

STN Planning: Example

14

9/9/2014S. Joo (sungmoon.joo@cc.gatech.edu) 27

Example: Total-order Formulation

9/9/2014S. Joo (sungmoon.joo@cc.gatech.edu) 28

Example: Total-order Formulation

15

9/9/2014S. Joo (sungmoon.joo@cc.gatech.edu) 29

Example: Total-order Formulation

Goal: move-each-twice

Move-stack(p1a, p1b)

Move-stack(p1b, p1c)

Stack 2 and 3 empty.

9/9/2014S. Joo (sungmoon.joo@cc.gatech.edu) 30

Solution to TOSTN planning problems

task list T=(t1 ,t2,…)

action a

π={a1 …, ak, a }; task list T=(t2, …)

task list T=(u1,…,uk ,t2,…)

task list T=(t1 ,t2,…)

method instance m

Total-order Forward Decomposition

16

9/9/2014S. Joo (sungmoon.joo@cc.gatech.edu) 31

• In state-space planning, must choose whether to search
forward or backward

• In HTN planning, there are two choices to make about direction:

– forward or backward

– up or down

• TFD goes
down and
forward

s0 s1 s2 … …op1 op2 opiSi–1

s0 s1 s2 …

task tm …

…

task tn

op1 op2 opiSi–1

task t0

Comparison to Forward and Backward Search

9/9/2014S. Joo (sungmoon.joo@cc.gatech.edu) 32

Comparison to Forward and Backward Search

• Like a backward search,
TFD is goal-directed

– Goals correspond
to tasks (i.e. operators

relevant for the task)

• Like a forward search, it generates actions
in the same order in which they’ll be executed (check preconditions)

• Whenever we want to plan the next task

– we’ve already planned everything that comes before it

– Thus, we know the current state of the world

s0 s1 s2 …

task tm …

…

task tn

op1 op2 opiSi–1

task t0

17

9/9/2014S. Joo (sungmoon.joo@cc.gatech.edu) 33

• TFD requires totally ordered

methods

• Can’t interleave subtasks of different tasks

• Sometimes this makes things awkward

– Need to write methods that reason

globally instead of locally

Limitation of Ordered-Task Planning

get(p) get(q)

get-both(p,q)

pickup(p)walk(a,b) walk(b,a) pickup(q)walk(a,b) walk(b,a)

goto(b)

pickup(p) pickup(q)

get-both(p,q)

pickup-both(p,q)

walk(a,b)

goto(a)

walk(b,a)

9/9/2014S. Joo (sungmoon.joo@cc.gatech.edu) 34

Partially Ordered Methods

• With partially ordered methods, the subtasks can be interleaved

• Fits many planning domains better

• Requires a more complicated planning algorithm

walk(a,b) pickup(p)

get(p)

stay-at(b) pickup(q)

get(q)

get-both(p,q)

walk(b,a) stay-at(a)

18

9/9/2014S. Joo (sungmoon.joo@cc.gatech.edu) 35

Example: Partial-order Formulation

9/9/2014S. Joo (sungmoon.joo@cc.gatech.edu) 36

π={a1 …, ak, a }; w' ={t2, t3, …}

w={ t1 ,t2,…}

method instance m

w' ={ t11,…,t1k ,t2,…}

w={ t1 ,t2, t3…}

operator instance a

Solution to POSTN planning problems

task

state (s,a) ;

19

9/9/2014S. Joo (sungmoon.joo@cc.gatech.edu) 37

STN planning: TFD & PFD

• STN does not allow parallel execution

• But can interleave steps (PFD)

• The resulting plan is totally ordered (both TFD & PFD)

9/9/2014S. Joo (sungmoon.joo@cc.gatech.edu) 38

Comparison to Classical Planning

• Like :

– Each state of the world is represented by a set of atoms.

– Each action corresponds to a deterministic state transition.

– Terms, literals, operators, actions, plans have same meaning as
classical planning.

• Different:

– Objective is to perform a set of tasks, not to achieve a set of
goals

– Added tasks, methods, task networks

– Tasks decompose into subtasks

• Constraints

• Task orders

– Backtrack if necessary

20

9/9/2014S. Joo (sungmoon.joo@cc.gatech.edu) 39

Comparison to Classical Planning

state

action

object - task

method

9/9/2014S. Joo (sungmoon.joo@cc.gatech.edu) 40

• Some STN planning problems are not expressible in classical planning

(STN planning is strictly more expressive than classical planning)

• Example:

– STN method:

◊ No arguments

◊ No preconditions

– Two operators, a and b

◊ Again, no arguments and no preconditions

– Initial state is empty, initial task is t

– Set of solutions is {anbn | n > 0}

– No classical planning problem has this set of solutions

◊ The state-transition system is a finite-state automaton

◊ No finite-state automaton can recognize {anbn | n > 0}

Comparison to Classical Planning

method1

bta

t

21

9/9/2014S. Joo (sungmoon.joo@cc.gatech.edu) 41

• Advantages

– Express things that can’t be expressed in classical planning

– Specify(encode) standard ways of solving problems (recipte)

 Otherwise, the planner have to derive recipes repeatedly from ‘first principle’
every time it solves a problem

 Can speed up by orders of magnitude (exponential  polynomial)

• Disadvantages

– Writing/Debugging an HTN domain model can be cumbersome/complicated

 try HTN if

(i) it is important to achieve high performance

(ii) you need more expressive power than classical planners can provide

Comparison to Classical Planning

9/9/2014S. Joo (sungmoon.joo@cc.gatech.edu) 42

• In STN planning, two kinds of constraints are associated with a method

– Preconditions

– Ordering constraints(i.e. task network)

• HTN planning can be even more general (generalization of STN)

– More freedom about how to construct the task networks

– Can use other decomposition procedures not just forward-decomposition

– Can have constraints associated with tasks and methods

• Things that must be true before, during, or afterwards

– Like POP+STN: input - partial-order tasks, output-partially ordered plan

– Some algorithms use causal links and threats like those in POP

– Plan = partially ordered collection of primitive tasks

• Task Network

(General)HTN Planning

STN
w = (U, E) - an acyclic graph
U – set of task nodes
E – set of edges

HTN
w = (U, C)
U – set of task nodes
C – set of constraints (allow for generic task networks).

22

9/9/2014S. Joo (sungmoon.joo@cc.gatech.edu) 43

• HTN planners may be domain-specific or domain-configurable

• Domain-configurable HTN planner

– Domain – independent planning algorithm

– Domain – states, operators, tasks, and methods

– Planning problem – domain, initial state, initial task network

• Domain dependent vs. Domain independent

D1 D2 D3

P1 P2 P3

D1 D2 D3

P

Domain

Planner

Planning procedures

Domain Dependency

