# CS 4649/7649 Robot Intelligence: Planning

### **Heuristics & Search**

### **Sungmoon Joo**

# School of Interactive Computing College of Computing Georgia Institute of Technology

S. Joo (sungmoon.joo@cc.gatech.edu)
\*Slides based on Dr. Mike Stilman's lecture slides

9/4/2014

1

## Course Info.

- Course Website: joosm.github.io/RIP2014
- · Course Wiki: github.com/RIP2014/RIP2014Wiki/wiki
  - add your contact info, start grouping/filling in project ideas, etc.
  - github invitation sent (if you didn't get one, let me know)
  - S/W tutorial
- RIM seminar: http://www.robotics.gatech.edu/hg/item/318301
  - Steven M. LaValle Planning expert, Virtual Reality
  - Friday, September 5, 2014 12:00~13:00
  - Marcus Nanotechnology Building

S. Joo (sungmoon.joo@cc.gatech.edu)

9/4/2014

| State Space vs. Plan Space vs. Graph | 1 Space |
|--------------------------------------|---------|
|--------------------------------------|---------|

|             | State Space<br>(60s - )                  | Plan Space<br>(70s -)                                         | Graph Space<br>(90s - )                              |
|-------------|------------------------------------------|---------------------------------------------------------------|------------------------------------------------------|
| Algorithm   | Progression<br>Regression                | Partial Order<br>Planning                                     | Iterates<br>Graph Building<br>Regression Search      |
| Nodes       | World States                             | Partial Plans                                                 | Graph Levels                                         |
| Transitions | Actions -Move(x,y,z) -Load(x,y) -Open(r) | Plan Refinement Operations -Adding Steps -Promotion -Demotion | Sets of Actions -Constraint Coding -Mutual Exclusion |

S. Joo (sungmoon.joo@cc.gatech.edu)

9/4/2014







































# **Uninformed Search: Iterative Deepening (IDS)**

### What is the difference between IDS and BFS?

Much less memory at any given time

- first checked in the same order they would be checked in a breadth-first-search
- nodes are deleted as the search progresses

# Usually better than plain DFS

when memory is not an issue

### Main drawback

Redundancy

S. Joo (sungmoon.joo@cc.gatech.edu)

9/4/2014

23

# **Efficiency in Planning**

• Planning Efficiency: speed of a planner

Smart robots make **good** decisions.

Smarter robots make **good** decisions **fast!** 

We like smart robots

How can we make our robots smarter?

S. Joo (sungmoon.joo@cc.gatech.edu)

9/4/2014





# **Informed Search: Best First Search**

- OPEN = [initial state] CLOSED = []
- · While OPEN is not empty

dο

- 1. Remove the best node from OPEN, call it n, add it to CLOSED.
- 2. If n is the goal state, backtrace path to n (through recorded parents) and return path.
- 3. Create n's successors.
- 4. For each successor do:
  - a. If it is not in CLOSED and it is not in OPEN: evaluate it, add it to OPEN, and record its parent.
  - Otherwise, if this new path is better than previous one, change its recorded parent.
    - i. If it is not in OPEN add it to OPEN.
    - ii. Otherwise, adjust its priority in OPEN using this new evaluation.

done

S. Joo (sungmoon.joo@cc.gatech.edu)

9/4/2014

27

# **Informed Search: Best First Search**



| Open          | Successor    | Closed     | Parent |
|---------------|--------------|------------|--------|
| [01]          |              | []         |        |
| [11,12,13]    | [11,12-n,13] | [01]       | 01     |
| [11,13]       | [21,22,23-n] | [12,01]    | 12     |
| [21,22,11,13] | [34-n]       | [23,12,01] | 23     |

S. Joo (sungmoon.joo@cc.gatech.edu)

9/4/2014

# **Properties of Heuristics: h(s)**

### Informed

- Does estimate lead to the goal?
- · Accuracy of heuristic

### **Admissible**

- $h(s) \le true$  "cost to go"
- Is Best-First Search with Admissible h(s) optimal? NO! Why?

S. Joo (sungmoon.joo@cc.gatech.edu)

9/4/2014

29

# Value = Cost + Cost To Go f(n) = g(n) + h(n) Cost you have to pay to reach the goal from n Cost you already paid to reach node n Cost you already paid to reach node n S. Joo (sungmoon.joo@cc.gatech.edu) 9/4/2014 30



# **Variants of Heuristic Search**

- Best-First
- Δ<sup>3</sup>
- Weighted A\*
  - $H(s) = Cost(s) + W \times h(s)$
  - Not admissible, but often works well
- Hill Climbing
  - Local Best-First Search
  - When stuck, randomly chooses new starting point
- "Enforced" Hill Climbing
  - Local Best-First Search
  - When stuck, perform breadth-first search until a better state is found

S. Joo (sungmoon.joo@cc.gatech.edu)

9/4/2014