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Kalman Filtering

*Slides based in part on Dr. Mike Stilman’s slides
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• R. Kalman born in Hungary in 1930

– BS & MS from MIT, ScD from Columbia

– Devised filter in 1960

– Changed control theory forever

– Awarded National Medal of Sciences Oct. 7 2009

Kalman Filter
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Two measurements with different sensors… What is the best estimate of the distance?

Kalman Basics: Estimating Distributions

Robot w/ two laser scanners

Distance measurement

Wall

Model #1: Robot is not moving
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a measurement with sensor#1

Kalman Basics: Estimating Distributions

Distance measurement
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Kalman Basics: Estimating Distributions

another measurement with sensor #2

Distance measurement

a measurement
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Conditional Density: Combine Estimates
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Conditional Density: Combine Variances
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Kalman Basics

a measurement

another measurement
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What if the robot is moving?

• How do we incorporate the motion in our estimation?

• Kalman Filter can include a LINEAR model of motion

Model #2: Robot is moving
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Kalman Filter Concept

Predict(using ‘model’)  the new state and its uncertainty

Correct prediction with new measurement

Prediction Correction
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Simple Process Model
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Measurement Model
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Measurement Model
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Kalman Filter

Prediction Correction

Initialize

Look familiar?
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Kalman Filter + Controller

Real system

Simulated system

(Kalman Filter)

State estimation
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Problem?
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Derivation of the Kalman Filter

System

To derive the Kalman Filter for the system, consider the following:

Cost

System

Find          that minimize J
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Derivation of the Kalman Filter
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Kalman Filter Summary

• What it does

Optimally estimates system position from noisy sensor data

• What it does not do:

Handle nonlinear systems

• However these handle nonlinear systems:

Extended Kalman Filter (EKF)

Particle Filter (PK)

• Next week: Saul will cover

- Nov. 18th: POMDP

- Nov. 20th: Manipulation & NAMO

• Three lectures left

- Nov. 25th : Summary

- Dec. 2nd : Extension of Planning/Control: Language, Hybrid System 

- Dec. 4th : Wrap up

• Due Reminder:

- Project report: Due Dec. 4th

- Project report review: Due Dec. 11th

- Project presentation & presentation evaluation: Dec. 11th
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Administrative


