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CS 4649/7649
Robot Intelligence: Planning

Sungmoon Joo

School of Interactive Computing

College of Computing

Georgia Institute of Technology

Probability Primer

*Slides based in part on Dr. Mike Stilman and Dr. Andrew Moore’s  slides
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• CS7649

- project topic decision, grouping: Due Oct. 23  update Wiki (group, description)

- project proposal: Due Oct. 30, 2-3page (motivation, technical gap, approach,  

expected result)

- project final report: Due Dec. 4, 23:59pm, conference-style paper (format is on 

the course web)

- project presentation: Dec. 11, 11:30am - 2:20pm

*there may be meetings between project teams and the instructor to see if 

projects are progressing as scheduled.

• CS4649

- project reviewer assignment: Oct. 28

- proposal review report: Due Nov. 6

- project review report(for the assigned project): Due Dec. 11, 11:30am

- project presentation review*(for all presentation): Due Dec. 11, 2:20pm

*presentation review sheets will be provided

Administrative– Final Project
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Your models are Incorrect!

• Sensing & State Estimation  Uncertainty

– Sensors have noise

– You don’t know exactly what the state is (e.g. mapping, localization,…)

• Action Execution  Uncertainty

– Your actuators do not do what you tell them to

– The system responds differently than you expect

: Frictions, etc.

Two Sources of Error

Need to formalize uncertainty!
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(Scalar) Random Variable
- a variable but rather a function that maps events (or outcome) to real numbers, 
each with an associated probability

Random Variable & Probability

* A random vector is a vector-valued random variable whose components are scalar random 
variables.



3

10/21/2014S. Joo (sungmoon.joo@cc.gatech.edu) 5

Markov Processes: Formalizing Uncertainty

A random process is a collection of continuous-valued random variables indexed 
by a continuous-valued parameter

A Markov Process is a random process which can be completely specified by 
giving the density functions                      and               for all   

We will, mostly, work on discrete version !
- Markov sequence or Markov chain 

A random sequence is a collection of random variables (scalar or vector) indexed 
by a discrete-valued parameter such as

A random sequence is called Markov Sequence if    
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Markov Decision Process (MDP)

*
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The following hold for the discounted problem

(a) The value iteration algorithm converges to the optimal cost

starting from arbitrary initial conditions

(b) The optimal cost      of the discounted problem satisfy Bellman’s 
equation, and they are the unique solution of Bellman’s equation

(c) 
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Value Iteration

“Dynamic Programming and Optimal Control” by D.P. Bertsekas
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Where are we headed?

Look familiar?
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Where are we headed?

‘Cost-to-Go’ of each state  Policy
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Where are we headed?

‘Value’ of being at each state

Non zero rewards

Zero rewards 
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Where are we headed?

‘Value’ of being at each state  Policy

After some 

iterations
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Where are we headed?
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• Directly related to uncertainty in the world:

– Things don’t always go the way you plan

– Yet, some regularity can be found!

• Currently, AI has taken on concepts from the 18th century:

– Probability Theory

– Bayesian Methods

Relevance of Probability
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Points of View:

• Probability describes regularities in events

• Probability encodes regularities for which we don’t know the cause

Applications:

• Probability distributions describe the dynamics of a process

• Probability distributions are more accurate than guesswork

• An agent’s beliefs can be represented as a probability distribution

 Bayesian Reasoning

Philosophy
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• A random variable is the result of a chance event, that you can measure 
or count (continuous or discrete R.V.)

• A is a boolean-valued random variable if:

– A denotes an event 

– There is some degree of certainty as to whether A occurs

Examples of events

- When you toss a coin, the outcome is heads

- You will learn something about probability from this lecture

- You wake up tomorrow with a headache

Random Variables
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P(A) = the fraction of possible worlds in which A is true

Probability

World where A is false

World where 

A is true

Space of all possible worlds
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• 0 ≤ P(A) ≤ 1

• P(True) = 1

• P(False) = 0

• P(A or B) = P(A) + P(B) – P(A and B)

The Axioms of Probability

P(A)

Area can’t be less than 0
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• 0 ≤ P(A) ≤ 1

• P(True) = 1

• P(False) = 0

• P(A or B) = P(A) + P(B) – P(A and B)

The Axioms of Probability

● Event space of all possible worlds

● Area is 1

P(A)

Area can’t be greater than 1
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• 0 ≤ P(A) ≤ 1

• P(True) = 1

• P(False) = 0

• P(A or B) = P(A) + P(B) – P(A and B)

The Axioms of Probability

True = A is true in all worlds False = A is false in all worlds
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• 0 ≤ P(A) ≤ 1

• P(True) = 1

• P(False) = 0

• P(A or B) = P(A) + P(B) – P(A and B)

The Axioms of Probability

P(A) P(B)
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Axioms of Probability vs. Others

• There have been attempts to handle uncertainty:
– Fuzzy Logic
– Three-valued Logic (True/False/Unknown)
– …

• But, axioms of probability are the ONLY system such that:
– “If you gamble using them you can’t be unfairly exploited by an
opponent using some other system.”

- de Finetti 1931
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Probability Theorems: 1

(1) 0 ≤ P(A) ≤ 1 (2) P(True) = 1 (3) P(False) = 0
(4) P(A or B) = P(A) + P(B) – P(A and B)

Prove: P (not A) = P (¬ A) = 1 – P(A)

Intuition:

Axioms

P(A)

P(1-A)
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Probability Theorems: 1

(1) 0 ≤ P(A) ≤ 1 (2) P(True) = 1 (3) P(False) = 0
(4) P(A or B) = P(A) + P(B) – P(A and B)

Prove: P (not A) = P (¬ A) = 1 – P(A)

Proof:

Axioms

P(A or not A) = P(True) = 1 

P(A and not A) = P(False) = 0 

1 = P(A) + P(not A) – 0 

P(not A) = 1 – P(A)

Ax. 2

Ax. 3

Ax. 4
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Probability Theorems: 2

(1) 0 ≤ P(A) ≤ 1 (2) P(True) = 1 (3) P(False) = 0
(4) P(A or B) = P(A) + P(B) – P(A and B)

Prove:

Proof:

Axioms

P (A) = P (A ∧ True)
= P ( A ∧ ( B ∨ ¬  B)) 
= P ((A ∧ B) ∨ (A ∧ ¬  B)) 
= P(A ∧ B) + P(A ∧ ¬ B) 

- P((A ∧ B) ∧ (A ∧ ¬  B))
= P(A ∧ B) + P(A ∧ ¬  B)

Truth Table
Truth Table
Distribute
Ax. 4

Ax. 3

P (A) = P (A and B) + P(A and not B)

= P (A ∧ B) + P(A ∧ ¬B)
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Multi-Valued Random Variables

A is a Random Variable with arity k if it can take on
exactly one value from the set:

{v1, v2, … , vk}

P(A = vi ∧ A = vj) = 0 if i ≠ j

P(A = v1 ∨ A = v2 ∨… ∨ A = vk) = 1
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Probability Theorems: 3

(1) 0 ≤ P(A) ≤ 1 (2) P(True) = 1 (3) P(False) = 0
(4) P(A or B) = P(A) + P(B) – P(A and B)
(5) P(A = vi ∧ A = vj) = 0 if i ≠ j
(6) P(A = v1 ∨ A = v2 ∨… ∨ A = vk) = 1

Axioms
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Probability Theorems: 4

(1) 0 ≤ P(A) ≤ 1 (2) P(True) = 1 (3) P(False) = 0
(4) P(A or B) = P(A) + P(B) – P(A and B)
(5) P(A = vi ∧ A = vj) = 0 if i ≠ j
(6) P(A = v1 ∨ A = v2 ∨… ∨ A = vk) = 1

Axioms
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Interim Summary

(1) 0 ≤ P(A) ≤ 1 (2) P(True) = 1 (3) P(False) = 0

(4) P(A or B) = P(A) + P(B) – P(A and B)

(5) P(A = vi ∧ A = vj) = 0 if i ≠ j

(6) P(A = v1 ∨ A = v2 ∨… ∨ A = vk) = 1

P (not A) = P (¬  A) = 1 – P(A)

P (A) = P (A ∧ B) + P(A ∧ ¬ B)

Axioms

Theorems
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Visualizing Probability

P(¬A) + P(A) = 1

P(A)

P(1-A)

1
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Visualizing Probability

P(B) = P(B ∧ A) + P(B ∧ ¬ A)

P(A)

P(¬A)

P(B)
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Visualizing Probability
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Conditional Probability

P ( A | B ) = The fraction of possible worlds in which B = true
that also have A = true

P(S | G) = Fraction of goal reaching

worlds in which your sensor

works properly.

= # worlds with goal and sensor

# worlds with goal

= area of (S and G) region

area of G region

= P(S ∧G)

P(G)

S G

G = Robot reaches the goal

S = Sensor works properly
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Conditional Probability

• Conditional Probability (Definition)

• Corollary

x

y

z

A

B
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Probabilistic Inference

S G

G = Robot reaches the goal

S = Sensor works properly

P(G) = 1/20

P(S) = 1/10

P(S | G) = 3/4

P(S ∧ G) = P(S | G) P(G) = 3/4 × 1/20 = 3/80

P(G | S) = P(S ∧ G) / P (S) = (3/80) / (1/10) = 3/8 (NOT ¾ )
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Bayes Rule

Alternative Formulations:
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Probability Distributions

S.D. = Sqrt (Var)
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How do we answer questions?

Suppose we have a world with random variable A, B, and C

• Q1: What is the probability that A, B are true but C is false?

• Q2: Given that B is true, what is the probability of A being true?

• Q3: Given that B and C are true, what is the probability of A being true?
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Joint Distributions

Analogous to a truth table:

List all combinations of values

for each of the random variables.

Assign a probability to each

of the combinations (rows).
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Joint Distributions

• Q1: What is the probability that A, B are true but C is false?

P (A) = P (A ∧ B) + P(A ∧ ¬ B)
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Joint Distributions

Using a joint distribution:

• Q2: Given that B is true, what is the probability of A being true?
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Joint Distributions

Using a joint distribution:

• Q3: Given that B and C are true, what is the probability of A being true?


