

Probabilistic Roadmap
• Roadmap is a graph G(V,E) where a robot configuration $q \in Q_{free}$ is a vertex \in V, edge $(q_1, q_2) \in E$ implies collision-free path between these configurations
 Create a roadmap once (for static environment)
 Learning the map - Construction and Expansion
- Initially empty graph G
- A configuration q is randomly chosen, if $q \in Q_{free}$, then added to G
- Repeat until N vertices chosen
- For each q, select k closest neighbors
- Local planner connects q to its neighbors
- If connect is successful (exists a collision free local path), add edge(q,q') to ${\sf G}$
- If there are disconnected 'roadmaps', expand locally to connect them
S. Joo (sungmoon.joo@cc.gatech.edu) 10/16/2014 4

PRM: Challenges
1. Finding & Connecting neighboring points
- Only easy for holonomic systems (e.g. linked manipulators) $ ightarrow$ why?
(i.e., for which you can move each degree of freedom at will at any time).
- Typically solved w/o collision checking; later verified if valid by collision
checking
2. Collision checking
- Often takes majority of time in applications
3. Sampling
- How to sample uniformly (or biased according to prior information)
over configuration space?
4. Local Planner
- How to generate local path? – incremental,
*distance metric – Euclidean, *post processing – shortening, smoothing
S. Joo (sungmoon.joo@cc.gatech.edu) 10/16/2014 6

RRT shaping
 If step-size is small, many nodes are generated, close together As number of nodes increases, nearest neighbor search slows down → Maybe better to only add the last sample along the line (q_{near}, q_{rand})?
 q_{rand} determines what direction we go What if q_{rand} = q_{goal} ? → Very greedy algorithm (too much bias), Get stuck in local minima → Maybe use uniform q_{rand} with occasional(how often?) q_{rand} = q_{goal} ?
 * Bias toward goal When generating a random sample, with some probability pick the goal instead of a random node when expanding This introduces another parameter 5-10% is the right choice If you do this 100%, then you may easily get stuck in local minima
S. Joo (sungmoon.joo@cc.gatech.edu) 10/16/2014 22

	В	ug Algor	ithms Sum	ımary	
	Algorithm	Bug 0	Bug 1	Bug 2	
	Completeness	х	0, Exhaustive	0, Greedy	
	Characteristic	-	Safe, Reliable	Better in some cases. But worse in other cases	
	*None of them is c	optimal	-	<u> </u>	
S.	Joo (sungmoon.joo@cc.ga	tech.edu)	1	0/16/2014	47

	Complete	Optimal	Efficiency	Model Required
Bug 1	Yes	No	~	No
Bug 2	Yes	No	Usually > B1	No
Visibility	Yes	Goal Dist	n² log n + A*	Yes
Voronoi	Yes	Obs Dist	n log n? + A*	Yes
Voronoi Bug	Yes	Obs Dist	~	No
Voronoi Brushfire	Resolution	Obs Dist	~ # cells	Yes
Exact Cell	Yes	No	n log n + A*	Yes
Approximate Cell	te Cell Resolution	Manh. Dist.	st. ~ # cells Yes	Yes
Potential Fields	No	Locally	Linear	Yes

