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Administrative - HW#2

e HW#2
- due Nov. 10
- similar protocol as HW#1 — use Wiki for grouping
- Deliverables:
(i) A PDF summary

(ii) A repository(git, dropbox, etc.): Contains the relevant files (summary,
source code, movies, README, etc.)

* Email the PDF summary and the link to your repository.

- Participation: Include a page in your summary describing what each
group member did to participate in the project, in detail.

- Printing: On Nov. 11, bring a printout of your summary to the class.
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Administrative — Final Project

» CS7649

- project topic decision, grouping: Due Oct. 23 - update Wiki (group, description)

- project proposal: Due Oct. 30, 2-3page (motivation, technical gap, approach,
expected result)

- project final report: Due Dec. 4, 23:59pm, conference-style paper (format is on
the course web)

- project presentation: Dec. 11, 11:30am - 2:20pm

*there may be meetings between project teams and the instructor to see if

projects are progressing as scheduled.

» CS4649

- project reviewer assignment: Oct. 28

- proposal review report: Due Nov. 6

- project review report(for the assigned project): Due Dec. 11, 11:30am

- project presentation review*(for all presentation): Due Dec. 11, 2:20pm
*presentation review sheets will be provided
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Probabilistic Roadmap

e Roadmap is a graph G(V,E) where a robot configuration q € Q. is @
vertex € V, edge (q;, 9,) € E implies collision-free path between these
configurations
 Create a roadmap once (for static environment)
e Learning the map - Construction and Expansion

- Initially empty graph G

- A configuration q is randomly chosen, if q € Q.. , then added to G

- Repeat until N vertices chosen

- For each q, select k closest neighbors

- Local planner connects q to its neighbors

- If connect is successful (exists a collision free local path), add edge(q,q") to G
- If there are disconnected ‘roadmaps’, expand locally to connect them
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PRM

¢ Query - Finding a path

- Given Gine and Ggoq

- Find k nearest neighbors of gy, and g, in the roadmap, and plan local
paths from gy, and qg,, to the roadmap, respectively

- Find connections from gy t0 Qgqq

- Once we have a roadmap, search !

PRM samples the entire space!

Spreads out like uniformity
but need lots of sample to
cover space(Multy-query)

.
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PRM: Challenges

1. Finding & Connecting neighboring points
- Only easy for holonomic systems (e.g. linked manipulators) > why?
(i.e., for which you can move each degree of freedom at will at any time).
- Typically solved w/o collision checking; later verified if valid by collision
checking
2. Collision checking
- Often takes majority of time in applications
3. Sampling
- How to sample uniformly (or biased according to prior information)
over configuration space?
4. Local Planner

- How to generate local path? — incremental, ...
*distance metric — Euclidean, ... *post processing — shortening, smoothing
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Making PRM Efficient

* Two procedures need to be extremely efficient:
- Find Nearest Neighbor
- Identifies goals for local planner
- Collision Detection
- Check if a sampled configuration is in free space

- Validate local plan
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PRM: Analysis

e Sound
Yes

e Complete
No
Probabilistically Complete
— The probability of success increases exponentially
with the number of samples generated.
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Completeness

e Completeness

— Complete planner: always answers a path planning query correctly in
bounded time

— Probabilistic complete planner: if a solution exists, planner will
‘eventually’ find it, using random sampling (e.g. Monte-Carlo sampling)

- Resolution complete planner: similar concept as PCP but based on a
deterministic sampling (e.g. sampling on a fixed grid), and the ‘resolution’

of the grid matters while the number of samples matters in PCP

wn
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Rapidly-Exploring Random Trees (RRT)

« Planning is search, and search happens over a search tree
¢ RRT defines a simple rule for growing high quality trees
o Slightly different than random sampling idea in generic PRM

- (1)Choose a point at random from free space
.®

it ') Yand
Unear

(2)Find the nearest configuration already in the tree

[LaValle '98, LaValle & Kuffner '00]
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Rapidly-Exploring Random Trees (RRT)

¢ Planning is search, and search happens over a search tree
* RRT defines a simple rule for growing high quality trees
« Slightly different than random sampling idea in generic PRM

EXTEND(T, q,an4)

qnemf;_.--‘.
Finit Urand

qnear\

(3)Extend the tree in the direction of the new configuration

BUILD_RRT (q;) { Extend returns
T.init(q;nie); 1. Trapped, can’t make it
fork=1to Kdo 2. Extended, steps toward q,,,4
Orana = RANDOM_CONFIG(); 3. Reached, connects to q,,,q
EXTEND(T, 9;2nq)
}
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RRT: Naive Implementation
Start with middle
Sample near this
node
Then pick a node at
random in tree *
Sample near it
End up Staying in
middle
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RRT: Voronoi Bias

Monte-Carlo way of biasing search into largest Voronoi regions

The probability that a path is found increases
exponentially with the number of iterations.

[Kuffner & LaValle '00]
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http://msl.cs.uiuc.edu/rrt/gallery_2drrt.html
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RRT

¢ A data structure and algorithm that is designed for efficiently
searching nonconvex high-dimensional spaces.

¢ RRTs are constructed incrementally in a way that quickly reduces
the expected distance of a randomly-chosen point to the tree.

e RRTs are particularly suited for path planning problems that involve

obstacles and constraints (nonholonomic or kinodynamic).
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Merging Trees: Bidirectional

* 2 trees: Ty, rooted at g, and T, rooted at qqq,
» Each tree is expanded by

- Orang 1S generated from uniform distribution

- Onear IS found, nearest tree node to q,,nq

- move by a step-size along line (9,,car Arang) 10 Gnew- If NO collision, add q,,.,, to tree
« If trees merge, path is found

] qgoa\
Qinit r\\
Ynear Srand
Tinit Taoa

[Kuffner & LaValle ‘99]
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RRT Connect

RRT algorithm is sensitive to step-size

* How far do we move along line (Q,,car Arand)?
 Can a greedier algorithm work better?

* Why not move all the way to q,,,4?

qneuf;_.--‘.
it Yrand
Ynear

[LaValle '98, LaValle & Kuffner '01]
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RRT Connect

RRT algorithm is sensitive to step-size

* How far do we move along line (9,,car 9rand)?
+ Can a greedier algorithm work better?

* Why not move all the way to q,,,4?

[LaValle '98, LaValle & Kuffner '01]
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Merge Two Trees with RRT Connect

rarget
4goat G goal
Diniz Dinit

Drarger

AN oal
\

Gnear

Giarget

9 goal
ini g Dnear
init

Gnew

q:m'g«l
Daval

dR 41

Dnear

Yinit

[LaValle '98, LaValle & Kuffner '01]
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Multi-Tree RRT Connect

[ qgual—1
Qinit "k/
~ X
-L[\ qgo:ﬂ—Z
A
[Hirano et. al. ‘05]
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Multi-Tree RRT Connect

’ qgua\-1

qimlr\\ j
~

[Hirano et. al. ‘05]
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RRT shaping

o If step-size is small, many nodes are generated, close together
* As number of nodes increases, nearest neighbor search slows down
- Maybe better to only add the last sample along the line (qnears Arand)

Jrang determines what direction we go

» What if Qrand = qgoal ?
- Very greedy algorithm (too much bias), Get stuck in local minima
- Maybe use uniform g4 With occasional(how often?) gng = dgoal ?

* Bias toward goal

— When generating a random sample, with some probability pick the
goal instead of a random node when expanding

— This introduces another parameter

—5-10% is the right choice

— If you do this 100%, then you may easily get stuck in local minima

?

S. Joo (sungmoon.joo@cc.gatech.edu) 10/16/2014
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RRT-based Planning in Action

2D Maze: Point Robot

http://msl.cs.uiuc.edu/rrt
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RRT-based Planning in Action
Randomness
http://msl.cs.uiuc.edu/rrt
S. Joo (sungmoon.joo@cc.gatech.edu) 10/16/2014 24
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RRT-based Planning in Action

Articulated Linkage

Y .

http://msl.cs.uiuc.edu/rrt
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RRT-based Planning in Action
Car-like Robot
http://msl.cs.uiuc.edu/rrt
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RRT-based Planning in Action

Trailer Parking

I

;
-

5= =

@
|

http://msl.cs.uiuc.edu/rrt
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Task Constraints
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Task Constraints
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Task Constraints
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Task Constraints

Workspace

-

X
(@) FixedC=[011111]

(b)FixedC=[111110] (c)Para.C=[0001107"

Joint space

Probability of Satisfying
1@,..----q Task Constraints ~ 0
_ rand

qnear

Yinit
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Task Constraints
¢ Projection methods:
Or\ Qrand x O Random Configuration
- Exact Task Constraints v/

@ RRT Extension from
Nearest Point

O New, Constrained

Configuration

- Hard Task Constraints v/
e
. e

e Tangent-space sampling

¢ Piecewise approximation of constraint manifold
o Soft Constraint v

S. Joo (sungmoon.joo@cc.gatech.edu) 10/16/2014 32
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Task Constraints: First-Order Retraction

Stilman '07,’10 Translation or rotation can only be fixed completely within
‘A-rerrm'| <€

) 0

A(.lcrr - J;_\m A:;["crr Lsample

Az...(q) = CAz(q)

QL =q.- Aqgerr £

ewW
O& Qrand X3 ‘O Random Configuration 3
k ® RRT Extension from

Nearest Point

Gy © New, Constrained
Configuration

t’ .l‘ /:‘I k ’-
.~;?'ﬂ s
TR

A
q~\~~.\ P

RS
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Task Constraints: Hard Constraints

Berenson '09

A;«l:min < Awur(q) E Ai'l"n.:n.\:

e Constraints are allow for an
0 A‘Emax Gsample

. interval of values

e All configurations satisfying the

S fnevn‘(_ . constraints are equally good with

no bias toward the center of the
" constraint, rather bias toward the
(. ] QHear
N _ oundary of the constraint
] e “Infeasible samples are
projected toward the nearest

constraint boundary.
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Task Constraints: Soft Constraints

e Soft Task constraints
- Allow range of values
- Biased toward a preferred value

’
Qnew < qs

0 ATmax 0 Repeat until
i o Jsample +« Collision
! + Reached joint
limits
;T
V4 4 + No progress
/- toward preferred
\ value
"\_ + Reached preferred
value
A
1, Accept Unew if
+ Progress toward
A preferred value
’ . - ey + Progress toward
q = g—min{d. |[|Aqe ||} ———
!s ls { ” fer ||} ||A"h‘r| || sample
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Constraint Representation

[ t
t(l')_j
b
SRS
0

Selection matrix (Stilman)

/

A"E! .‘J-(q‘.l = CAJ:((”

Awmiu i‘ Awrw'“]) ‘S Awmu.\:

AN

" i ¢ Error range
b\.\\\\\, | /ﬁ-*'/"'d (Berenson)

X-Y-Z Euler angles Z-Y-Z Euler
[Berenson et al. angles
2009]
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Soft Task Constraints

-

%0 §

No constraint Soft task constraint
[Kunz et al. '12]
S. Joo (sungmoon.joo@cc.gatech.edu) 10/16/2014 37
Motion Planning Summary
« Motion planning is the ability for a robot to compute its own motions in
order to achieve certain goals.
(i) To compute ‘motion strategies’
- geometric path
- time-parameterized trajectories
- sequence of sensor-based motion commands, ...
(ii) To achieve high-level goals
- go to A without colliding with obstacles
- pick up the mug, ...
¢ Make decisions in continuous space!!
¢ All (autonomous) robots should eventually have this ability
S. Joo (sungmoon.joo@cc.gatech.edu) 10/16/2014 38
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Basic Path Planning

“Compute a continuous sequence of collision-free robot configurations connecting
the initial and goal configurations.”

Obstacles Free Space
Init / Workspace
Oq.,,_ /
Sy
Sy
—y
Robot*/
o
Goal
World
*Point robot
S. Joo (sungmoon.joo@cc.gatech.edu) 10/16/2014 39
w 1/ =
Bug 0” Algorithm

@ Move to Goal

@ Follow obstacle until you can go to goal again

©® Continue

Hit point
o -\
@\

S. Joo (sungmoon.joo@cc.gatech.edu) 10/16/2014 40
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“Bug 0” Algorithm

Not complete!

@ Move to Goal
@ Follow obstacle until you can go to goal again
©® Continue

Hit point

S. Joo (sungmoon.joo@cc.gatech.edu) 10/16/2014
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“Bug 1” Algorithm

circumnavigate
@ Move to Goal
@ Follow Obstacle & Remember Closest Point L,
© Return to Closest Point*and Continue @
v

Terminate when goal is found or no progress.

*By following the shortest path along the object boundary

S. Joo (sungmoon.joo@cc.gatech.edu) 10/16/2014
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“Bug 2" Algorithm

@ Move to Goal (following m-line)
@ Follow Obstacle to m-line (closer to goal)
© Depart on m-line closer to goal, Continue @

Terminate when goal is found or no progress.
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Comparison of Bug 1 & Bug 2
¢ Bug1l
— Exhaustive Search
— Evaluates Choices before choosing
¢ Bug?2
— Greedy, Heuristic Algorithm
s Mostly, Bug 2 performs better and Bug 1 is more predictable
« Both are complete, neither is optimal!
e There exist variants for more complex sensors (see Tangent Bug)
S. Joo (sungmoon.joo@cc.gatech.edu) 10/16/2014 44
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Bug Algorithms Summary

local environment knowledge & global goal
Robot can tell the distance (smell the goal)

¢ Otherwise local sensing of walls .

* Reasonable World
— Finite obstacles in finite space
— Workspace is bounded

S. Joo (sungmoon.joo@cc.gatech.edu) 10/16/2014 45

Bug Algorithms Summary

Completeness is Desirable

¢ Completeness does not always require complexity

¢ Bug Algorithms achieve global completeness with local planning
Optimality is Desirable

s Bug Algorithms are not Optimal

S. Joo (sungmoon.joo@cc.gatech.edu) 10/16/2014 46
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Bug Algorithms Summary

Algorithm Bug 0 Bug 1 Bug 2

Completeness X 0, Exhaustive 0, Greedy

Characteristic -

Safe, Reliable

Better in some cases. But
worse in other cases

*None of them is optimal

S. Joo (sungmoon.joo@cc.gatech.edu)

10/16/2014 47

Roadmap Approach to Navigation Planning

e Assumption 1: Static environment

¢ Assumption 2: World is known

¢ General Idea:

satamaza| B o A | R LC)
2 o e
5 Wi — 78 Clavelsna | | | AL
.th:nnF W] —i s : :W s Seaspin
otane — son Speapein @ o
Koan e & Ponnsylvania ALy
* oaemo s '_ e T NE
ndiana | ehunse @ 133 Dhmg"unuk /Fiy = :“"““ Trot
male Vi ) b ; amcatia} t
o WU combus 4 v w e
Hanapolis < G ivew
i ettamiten 550 Marylang &2
o @
Calumizus Ry
Cinznnati

A
- Avoid searching the entire space P e
- Pre-compute a (hopefully small) graph (i.e. .- ="V 4 v e
w o
. . . L) 1 suie A BEEE
the roadmap) s.t. staying on the roads is B =
Morth rveride
Carolina’  Raleigh &
guaranteed to avoid the ‘obstacles’ (& to P S
GO
take us to the goal) e .
- Search a path between gy and gyq, ON TS AN A
the roadmap
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Visibility Graphs*

« Early Motion Planning Algorithm ‘

+ Nodes share an edge if they are
within “line of sight”

+ All points in free space are within

sight of at least one node Tomas Lozano-Perez

- Point robot
Polygonal obstacles

* “An algorithm for planning collision-free paths among polyhedral obstacles” 1979 T. Lozano-Perez & M. A. Wesley
* “A mobile automaton: An application of artificial intelligence techniques” 1969 N.J Nilson

S. Joo (sungmoon.joo@cc.gatech.edu) 10/16/2014
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Path Planning for Robots with Geometric Shapes

C-obst . C-obst

C-obst '_-". C-obst

A Robot s Robot
Path is swept volume Path is space curve

Step 1: Reduce robot to a point in the configuration space
Step 2: Compute configuration-space obstacles (not a trivial job)
Step 3: Search for a path in the collision-free configuration space

S. Joo (sungmoon.joo@cc.gatech.edu) 10/16/2014
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Visibility Graph Analysis

« Visibility Graphs are complete? Yes (Assuming Polygonal Obstacles)

» Visibility Graphs are optimal? Yes Metric: Distance Traveled

S. Joo (sungmoon.joo@cc.gatech.edu) 10/16/2014
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Voronoi Diagrams

» Edges maximally separate domain features

» Nodes are critical points where edges intersect |

o]

edge - edge vertex - vertex vertex - edge

S. Joo (sungmoon.joo@cc.gatech.edu) 10/16/2014
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Voronoi Diagram -> Navigation Planning

» Idea: Construct a path between q,; and gy, by following edges on the Voronoi
diagram
Voronoi diagram = Roadmap

@ < m
NN

Qini 9 goal :
w - /
2 L9 ® Y

:.)/ ¥ Qgoal \

Stepl. Find the point g*;,; of the Voronoi diagram closest to q;;
Step2. Find the point q*y,, of the Voronoi diagram closest to g,
Step3. Compute shortest path from g*,; to g%y, On the Voronoi diagram
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Interim Summary

Roadmap Approach
» Static environment, World is known
* Avoid searching the entire space

- Pre-compute a graph (i.e. roadmap) - Search space reduction

Roadmap approach for Navigation Planning
- Visibility Graph - Short path

- Voronoi Diagram - Safe/Conservative path

S. Joo (sungmoon.joo@cc.gatech.edu) 10/16/2014
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Other Options

» Exact Cell Decomposition

» Approximate Decomposition

« Potential Fields (Not really grids, but relevant)

S. Joo (sungmoon.joo@cc.gatech.edu) 10/16/2014 55

Exact Cell Decomposition: Convex Polygons

» Collection of non-overlapping cells: Union(Cells) = Free Space

“The graph of midpoints of edges between adjacent cells defines a roadmap”

S. Joo (sungmoon.joo@cc.gatech.edu) 10/16/2014 56
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Exact Cell Decomposition: Convex Polygons

» Collection of non-overlapping cells: Union(Cells) = Free Space

“The graph of midpoints of edges between adjacent cells defines a roadmap”

S. Joo (sungmoon.joo@cc.gatech.edu) 10/16/2014 57

Exact Cell Decomposition: Trapezoidal

+ Collection of non-overlapping cells: Union(Cells) = Free Space

Extend a bi-directional vertical line from each vertex until collision
¢ This is a convex polygonal decomposition
« Again a graph search

S. Joo (sungmoon.joo@cc.gatech.edu) 9/30/2014 58
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Approximate Cell Decomposition

* Use grid

s Is it complete?

— Yes, up to grid size
— Resolution Complete

o Is it optimal?

— Metric = # grid cells traversed
— Search Method = A*
— Yes IF heuristic is admissible

S. Joo (sungmoon.joo@cc.gatech.edu) 10/16/2014 59

Potential Fields

Avoid search

+ Potential Function Ell::ts'iabma
— U (q) Attracts to goal
- U(q) Repels from obstacles ‘86

Uaq) + Udlaq) = U(q)

— Typically smooth  Because we follow gradient: VU(q)

S. Joo (sungmoon.joo@cc.gatech.edu) 10/16/2014 60
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Potential Fields

Conical Potential
Ulg) = (d(g. ggom)-

'\_f-'lrﬂ =7 (

¢ \
ddgoal) (4 — Ggoal )-

Quadratic Potential —M—— _\l/_ L
SN
] 1, - (I
l ult,[q] = _)(-,d {_q‘quul)'
F _ } 1, i
att (Q) = VI attlq) = v G‘ad“ (q'qj_';--u.]) 3
P
= _J(-\vd ('I Q‘C;I)(Il)'
= (‘1 Ggoal ) 3
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Potential Fields
Oibstacle
5 il %u(ﬁ 7,%}4’. Diq) <Q*,
Jrepl) = 0, D(q)>@Q*,
whose gradient is
1 1 1 \ *
VUrep(q) = n (cg- f-’[*rﬁ) o Y Pla), Dig) < @,
0, Di(q) > Q*,
S. Joo (sungmoon.joo@cc.gatech.edu) 10/16/2014 62

31



Potential Fields

I R _4q-¢
di(a) = ‘_251{-1"(1(().(} Td'(q] m d(q,c)

1,7 1 1v3 i iy
i ) o = == )%, fd; <
Urep, (q) = { am ) ifdi(g) = Q;
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Potential Fields
+ Gradient Descent: ¢ — fVU(q)
e Complete? No (local minima)*
(G)
*Navigation function: To make sure only one global minimum
S. Joo (sungmoon.joo@cc.gatech.edu) 10/16/2014 64
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Summary: Navigation Algorithms

Complete Optimal Efficiency | Model Required
Bug 1 Yes No ~ No
Bug 2 Yes No Usually > B1 No
Visibility Yes Goal Dist | n?log n + A* Yes
Voronoi Yes Obs Dist | nlog n? + A* Yes
Voronoi Bug Yes Obs Dist ~ No
Voronoi Brushfire Resolution Obs Dist ~ # cells Yes
Exact Cell Yes No nlog n + A* Yes
Approximate Cell Resolution | Manh. Dist. ~ # cells Yes
Potential Fields No Locally Linear Yes
S. Joo (sungmoon.joo@cc.gatech.edu) 10/16/2014 65

Rigid Body Displacements

Must preserve rigid property, reflections are not allowed.

+ Translation: Every point moves a fixed distance in a specified direction.

y2
T2 =21 +dy To 7 dy

= +
Yo =1y +d, Y2 h dy

X3

P2

P2
» Rotation: One point is fixed. Others move a specified angle relative to fixed point.

Y2 %o ro = 210080 — g sinf [;rg] _ |:C9 —59} [11}
\14 Y2 = x18inf + y; cosf Yz s6 cf | [
X
p
* Every displacement can be represented as 1 Translation and/or 1 Rotation
S. Joo (sungmoon.joo@cc.gatech.edu) 10/16/2014 66
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Representations of Rotation (Coordinates)

« Fixed Axis (x,y,z) or (roll, pitch, yaw)
— Convenient and intuitive, 12 variations

o Euler Angles (z,y,x), (z,y,z) - (moving axes)
— Equivalent to reverse order fixed-axis

« Unit Quaternions (4 numbers)
— Easy to compose
— Meaningful Interpolation
— Useful for numerical stability, sampling, optimization

« Angle-Axis (4 numbers = 3 axis + 1 angle)

« Rotation Matrices (9 numbers — Orthonormal Matrix)

S. Joo (sungmoon.joo@cc.gatech.edu) 10/16/2014 67

Homogeneous Transform 3D

Interpretations:
e Maps p® to p* pt =THp"

A A
« Transform operator: creates P2 from 21

e Describes frame B relative to frame A
t4 = position of the frame

A A
B

A |.a
Rp=|x3 Y5 Z&

S. Joo (sungmoon.joo@cc.gatech.edu) 10/16/2014 68
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Configurations Space

Java Applet: Jeff Wiegley, Eric Lee, Ken Goldberg

S. Joo (sungmoon.joo@cc.gatech.edu) 10/16/2014 69
Kinematics
s Forward Kinematics
Mapping from joint angles to link positions
+ Inverse Kinematics
Mapping from link positions to joint angles
Goals are defined in world coordinates, not joints coordinates.
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Differential Kinematics

Sz bz Sz

[ 3 3 3. -|
What is the robot Jacobian? T P
| oz 0z oz
IO = [P0 32 B
38, 36, 38,
. . . . | Sury, dury, Jusy,
Matrix of Partial Derivatives of T T e
Kinematics w.r.t. each joint variable. 50, 30 30,

Why is it useful? §r | 6x|06,
ot |~ oer| ot
Workspace velocity \ Joint Velocity
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Gradient IK - How do we use J?

¢ Workspace goal . X4

X3
N a4 \
¢ How do we get a joint space goal? %2

e Assuming 6 D.O.F and J is full rank: Aq = J-1Ax
Iterate until convergence Xi = f(Qi)
¢ Otherwise Still Possible (Pseudo-Inverse & Variants): J*+ = JT (3J7 )1
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Can we solve these planning problems?

“Planning Algorithms”, S. Lavalle

http://www.kavrakilab.org/robotics/prm.html
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Key Idea

* What did Visibility, Voronoi, Cells, Fields have in common?
- Some form of explicit environment representation
- Attempt at some form of optimality

¢ New concepts from 1990s:
- Forget optimality altogether
- Focus on Completeness
- Think about Free Space
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A New Kind of Roadmap

¢ Previous roadmaps used features
related to actual obstacle features.

e Lydia Kavraki ‘94, ‘96 — Present
* Mark Overmars "92, 96 - Present « Probabilistic Roadmaps (PRM)
. - Features: Sampled free points
(a - Edges: Verified connections

2}

“Probabilistic roadmaps for path planning in high-dimensional configuration spaces”
By Kavraki, Svestka, Latombe, and Overmars, 1996, IEEE Transactions on
Robotics and Automation
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