
1

9/30/2014S. Joo (sungmoon.joo@cc.gatech.edu) 1

CS 4649/7649
Robot Intelligence: Planning

Sungmoon Joo

School of Interactive Computing

College of Computing

Georgia Institute of Technology

Roadmap Approaches

*Slides based in part on Dr. Mike Stilman’s lecture slides

9/30/2014S. Joo (sungmoon.joo@cc.gatech.edu) 2

Course Info.

• HW#1 due Oct 6th

- Wiki - Add your group info.

- Need a repo.?

- Late policy – No late HWs

2

9/30/2014S. Joo (sungmoon.joo@cc.gatech.edu) 3

Navigation Planning

S

G

Assuming full knowledge, how does the robot ‘plan’ its path from S to G?

9/30/2014S. Joo (sungmoon.joo@cc.gatech.edu) 4

Visibility Graph

• Assuming polygonal obstacles, it looks like the shortest path is a

sequence of straight lines joining the vertices of the obstacles

3

• Assuming polygonal obstacles, it looks like the shortest path is a

sequence of straight lines joining the vertices of the obstacles

• Visibility graph G = set of unblocked lines between vertices of the

obstacles + initial & goal configuration

= (V, E), V ={obstacle vertices} U {start, goal},

E = {edges (vi,vj) disjoint from obstacle interiors}

9/30/2014S. Joo (sungmoon.joo@cc.gatech.edu) 5

Visibility Graph





9/30/2014S. Joo (sungmoon.joo@cc.gatech.edu) 6

Visibility Graphs*

* “An algorithm for planning collision-free paths among polyhedral obstacles” 1979 T. Lozano-Perez & M. A. Wesley
* “A mobile automaton: An application of artificial intelligence techniques” 1969 N.J Nilson

- Point robot

- Polygonal obstacles

- Build Visibility Graph

- Reduce VG

- Search

4

9/30/2014S. Joo (sungmoon.joo@cc.gatech.edu) 7

Path Planning for Robots with Geometric Shapes

Figure from Dr. Seth Teller’s lecture slide

9/30/2014S. Joo (sungmoon.joo@cc.gatech.edu) 8

Visibility Graph Analysis

5

9/30/2014S. Joo (sungmoon.joo@cc.gatech.edu) 9

Roadmap Approach to Navigation Planning

• Assumption: Static environment

• General Idea:

- Avoid searching the entire space

- Pre-compute a (hopefully small) graph (i.e.

the roadmap) s.t. staying on the roads is

guaranteed to avoid the ‘obstacles’ (& to

take us to the goal)

- Search a path between qinit and qgoal on

the roadmap

9/30/2014S. Joo (sungmoon.joo@cc.gatech.edu) 10

Roadmap Approach to Navigation Planning

• Visibility Graph is an example of the roadmap approach

• Assumptions/Limitations? Polygonal objects, Zero distance to obstacles

Do we really care about strict optimality with distance metric?

What about safety?

6

9/30/2014S. Joo (sungmoon.joo@cc.gatech.edu) 11

Voronoi Diagrams

• Another type of ‘roadmap’

Voronoi diagram is a way of dividing space into a number of regions

9/30/2014S. Joo (sungmoon.joo@cc.gatech.edu) 12

Voronoi Diagrams

• Voronoi Diagram = The set of line segments separating the regions

corresponding to different colors

7

9/30/2014S. Joo (sungmoon.joo@cc.gatech.edu) 13

Voronoi Diagrams

• Voronoi Diagram = The set of line segments separating the regions

corresponding to different colors

Line segment: Points on the edge are equidistant from two data points

Vertices = Equidistant points from >2 data points

9/30/2014S. Joo (sungmoon.joo@cc.gatech.edu) 14

Voronoi Diagrams

• Voronoi Diagram = The set of line segments separating the regions

corresponding to different colors

Complexity (in 2D plane) – O(n log n) in time, O(n) in space

8

9/30/2014S. Joo (sungmoon.joo@cc.gatech.edu) 15

Generalized Voronoi Diagram (GVD)

9/30/2014S. Joo (sungmoon.joo@cc.gatech.edu) 16

Generalized Voronoi Diagram (GVD)

The points on the edges are the furthest from the obstacles & workspace boundary !!

9

9/30/2014S. Joo (sungmoon.joo@cc.gatech.edu) 17

Voronoi Diagram  Navigation Planning

qinit

qgoal

q*init

q*goal

• Idea: Construct a path between qinit and qgoal by following edges on the Voronoi

diagram
Voronoi diagram = Roadmap

Step1. Find the point q*init of the Voronoi diagram closest to qinit

Step2. Find the point q*goal of the Voronoi diagram closest to qgoal

Step3. Compute shortest path from q*init to q*goal on the Voronoi diagram

9/30/2014S. Joo (sungmoon.joo@cc.gatech.edu) 18

Practical Bug Alternative using GVD

10

9/30/2014S. Joo (sungmoon.joo@cc.gatech.edu) 19

Practical Bug Alternative using GVD

9/30/2014S. Joo (sungmoon.joo@cc.gatech.edu) 20

Bushfire Algorithm to Generate GVD

Bushfire

11

9/30/2014S. Joo (sungmoon.joo@cc.gatech.edu) 21

Bushfire

Bushfire Algorithm to Generate GVD

9/30/2014S. Joo (sungmoon.joo@cc.gatech.edu) 22

Bushfire

Bushfire Algorithm to Generate GVD

12

9/30/2014S. Joo (sungmoon.joo@cc.gatech.edu) 23

Bushfire

Bushfire Algorithm to Generate GVD

9/30/2014S. Joo (sungmoon.joo@cc.gatech.edu) 24

Voronoi Diagrams: Analysis

?

13

9/30/2014S. Joo (sungmoon.joo@cc.gatech.edu) 25

Voronoi Diagrams: Summary

9/30/2014S. Joo (sungmoon.joo@cc.gatech.edu) 26

Voronoi Diagrams: Summary

• Difficult in higher dimensions or nonpolygonal worlds

• Use of Voronoi is not necessarily the best heuristic

(“stay away from obstacles”)

- Can be much too conservative

- Can be unstable:

Small changes in Cobstacle  Large changes in GVD

14

9/30/2014S. Joo (sungmoon.joo@cc.gatech.edu) 27

Summary

Roadmap Approach

• Static environment

• Avoid searching the entire space

- Pre-compute a graph (i.e. roadmap)  Search space reduction

Roadmap approach for Navigation Planning

- Visibility Graph  Short path

- Voronoi Diagram  Safe/Conservative path

9/30/2014S. Joo (sungmoon.joo@cc.gatech.edu) 28

Other Options

15

9/30/2014S. Joo (sungmoon.joo@cc.gatech.edu) 29

Exact Cell Decomposition: Convex Polygons

9/30/2014S. Joo (sungmoon.joo@cc.gatech.edu) 30

Exact Cell Decomposition: Convex Polygons

“The graph of midpoints of edges between adjacent cells defines a roadmap”

16

9/30/2014S. Joo (sungmoon.joo@cc.gatech.edu) 31

Exact Cell Decomposition: Trapezoidal

9/30/2014S. Joo (sungmoon.joo@cc.gatech.edu) 32

Exact Cell Decomposition: Trapezoidal

17

9/30/2014S. Joo (sungmoon.joo@cc.gatech.edu) 33

Exact Cell Decomposition: Trapezoidal

Critical events: Create new cell, Split cell, Merge cells

9/30/2014S. Joo (sungmoon.joo@cc.gatech.edu) 34

Exact Cell Decomposition: Trapezoidal

18

9/30/2014S. Joo (sungmoon.joo@cc.gatech.edu) 35

Exact Cell Decomposition: Trapezoidal

9/30/2014S. Joo (sungmoon.joo@cc.gatech.edu) 36

Exact Cell Decomposition: Trapezoidal

19

9/30/2014S. Joo (sungmoon.joo@cc.gatech.edu) 37

Exact Cell Decomposition: Trapezoidal

9/30/2014S. Joo (sungmoon.joo@cc.gatech.edu) 38

Exact Cell Decomposition: Trapezoidal

Complexity (in 2D plane)
- Time: O(n log n)
- Space: O(n)

20

9/30/2014S. Joo (sungmoon.joo@cc.gatech.edu) 39

Exact Cell Decomposition: Analysis

*Expensive and difficult to implement in higher dimensions

*

?

9/30/2014S. Joo (sungmoon.joo@cc.gatech.edu) 40

Approximate Cell Decomposition

Use grid

21

9/30/2014S. Joo (sungmoon.joo@cc.gatech.edu) 41

Better Approximate Cell Decomposition

9/30/2014S. Joo (sungmoon.joo@cc.gatech.edu) 42

Better Approximate Cell Decomposition

22

9/30/2014S. Joo (sungmoon.joo@cc.gatech.edu) 43

Remember BFS: Policy?

9/30/2014S. Joo (sungmoon.joo@cc.gatech.edu) 44

Remember BFS: Policy?

23

9/30/2014S. Joo (sungmoon.joo@cc.gatech.edu) 45

Dijkstra & A*

9/30/2014S. Joo (sungmoon.joo@cc.gatech.edu) 46

Dijkstra & A*

A* - Cost = Optimal Cost-to-Come + Heuristic of Cost-to-Go

Dijkstra - Cost = Optimal Cost-to-Come

• If a heuristic of ‘Cost-to-Go’ becomes closer to the true optimal cost-to-go,
fewer vertices tend to be explored in comparison with Dijkstra’s algorithm

• Dijkstra = A* with Zero-Cost-to-Go (degenerate case of A*)

24

9/30/2014S. Joo (sungmoon.joo@cc.gatech.edu) 47

Policy

State  Action

We know what to do at each cell  Policy!

9/30/2014S. Joo (sungmoon.joo@cc.gatech.edu) 48

Why is this useful - Replanning

25

9/30/2014S. Joo (sungmoon.joo@cc.gatech.edu) 49

D* / D* Lite

9/30/2014S. Joo (sungmoon.joo@cc.gatech.edu) 50

D* / D* Lite Concept

- Maintains cost-to-go values

- Propagate backward from the goal  Backward Dijkstra

- Useful for navigation in an unknown environment

