CS 4649/7649
Robot Intelligence: Planning

Motion Planning: Introduction & Reactive Strategies

Sungmoon Joo

School of Interactive Computing
College of Computing
Georgia Institute of Technology

S. Joo (sungmoon.joo@cc.gatech.edu) 9/23/2014
*Slides based in part on Dr. Mike Stilman & Howie Choset's lecture slides

Course Info.

¢ TA - Saul
e HW#1 due next week
- Trouble with group matching?
- Need a repo.?
- Trouble with install & running open-source planners?
- Late policy
* Final Project Topic?

S. Joo (sungmoon.joo@cc.gatech.edu) 9/23/2014

Motion Planning: Goal

e Motion planning is the ability for a robot to compute its own
‘motions’ in order to achieve certain goals.
(i) To compute ‘motion strategies’
- geometric path
- time-parameterized trajectories
- sequence of sensor-based motion commands
(ii) To achieve high-level goals
- go to A without colliding with obstacles
- pick up the mug

* All (autonomous) robots should eventually have this ability

S. Joo (sungmoon.joo@cc.gatech.edu) 9/23/2014 3

Motion Planning: Sealing Process

Figure from “Planning Algorithms” by Steven M. LaValle

S. Joo (sungmoon.joo@cc.gatech.edu) 9/23/2014 4

Motion Planning: Piano Mover

Figure from “Planning Algorithms” by Steven M. LaValle

S. Joo (sungmoon.joo@cc.gatech.edu) 9/23/2014 5

Motion Planning: Parking

QAlg
9 | 5 F ||||]‘L>

Figure from “Planning Algorithms” by Steven M. LaValle

S. Joo (sungmoon.joo@cc.gatech.edu) 9/23/2014 6

Motion Planning: Goal

Make Decisions in
Continuous State
Spaces:

» Geometric
» Kinematic

S. Joo (sungmoon.joo@cc.gatech.edu) 9/23/2014

Basic Path Planning Example

Problem: Find a continuous path (set of points) from Init to the Goal.

Obstacles Free Space
Init / Workspace
Oq.,. /
Sy
Sy
—y
Robot*/
ro
Goal

World

*Point robot

S. Joo (sungmoon.joo@cc.gatech.edu) 9/23/2014

Motion Planning Statement

“Compute a continuous sequence of collision-free robot configurations connecting
the initial and goal configurations.”

Notations/Definitions

e q: the robot’s configuration, a complete specification of the position
of every point in the system (a set of parameters that define the robot
geometry in the world)

« W : the robot’s workspace, the points the robot can possibly reach
e Wo, : the i'th obstacle,

* Wi : the robot’s freespace, W = W - (U WO;)
eapathceC®,c:[0,1] > Wge where c(0) is gy and c(1) is Qgey

*Class CO : all continuous functions

S. Joo (sungmoon.joo@cc.gatech.edu) 9/23/2014

Completeness

+ Definition
— Finds a plan if one exists
— Return failure in finite time otherwise

« Importance
— Gives guarantees for performance

— Required in industry! Ig.il
~y

~y
— Suppose a task planner ~
is using a motion planner o
to fulfill its actions... Goal

S. Joo (sungmoon.joo@cc.gatech.edu) 9/23/2014

10

Optimality

Problem: Find the SHORTEST continuous path from Init to Goal.

Goal

S. Joo (sungmoon.joo@cc.gatech.edu) 9/23/2014

11

Bug Algorithms (Lumelsky & Stepanov ‘87)

e Vast majority of planning algorithms
assume global knowledge

¢ Bug algorithms: local environment
knowledge & global goal

¢ Robot can tell the distance (smell the goal) L YOUR BUe

ARE BELONG
. . TO ME !
¢ Otherwise local sensing of walls

¢ Reasonable World
— Finite obstacles in finite space
— Workspace is bounded

¢ Bug behaviors (insect-inspired)
— Follow a wall (right or left)
— Move in a straight line toward goal

S. Joo (sungmoon.joo@cc.gatech.edu) 9/23/2014

12

Bug Algorithms (Lumelsky & Stepanov ‘87)

« Full model?
* Precise

anning algorithm?

Init
O
S
-~
~
Sy
Ao
Goal
S. Joo (sungmoon.joo@cc.gatech.edu) 9/23/2014 13

Bug Algorithms

¢ Goal is known
¢ Obstacles are Unknown
¢ Limited Sensing

k, ,,_,% ﬁ\\
s B

Assumptions
- 2D World. Point robot. Finite # of Obstacles. Obstacles have bounded perimeters

- Robot has not prior knowledge of locations, shapes of the obstacles

- Robot can senses its position with perfect accuracy. Goal is known.

- Robot can measure the distance btw two points. Robot can measure its traveled distance
- Robot can perfectly detect contact with an obstacle

S. Joo (sungmoon.joo@cc.gatech.edu) 9/23/2014 14

“Bug 0” Algorithm

@ Move to Goal
@ Follow obstacle until you can go to goal again
€ Continue

Hit point

S. Joo (sungmoon.joo@cc.gatech.edu) 9/23/2014 15
w ” =
Bug 0” Algorithm
S. Joo (sungmoon.joo@cc.gatech.edu) 9/23/2014 16

“Bug 0” Algorithm

S. Joo (sungmoon.joo@cc.gatech.edu) 9/23/2014

17

“Bug 0” Algorithm

Pros:

¢ Solved the problem!

¢ No prior knowledge of environment

¢ Could use with prior knowledge if available

Cons
¢ Not Optimal
¢ Not Complete

S. Joo (sungmoon.joo@cc.gatech.edu) 9/23/2014

18

“Bug 0” Algorithm

Pros:

¢ Solved the problem!

¢ No prior knowledge of environment

¢ Could use with prior knowledge if available

Cons
¢ Not Optimal
+ Not Complete

S. Joo (sungmoon.joo@cc.gatech.edu) 9/23/2014

19

“Bug 0” Algorithm

Pros:

¢ Solved the problem!

¢ No prior knowledge of environment

¢ Could use with prior knowledge if available

Cons
* Not Optimal
* Not Complete

Can We Make It Smarter?

What if it had MEMORY? ®

S. Joo (sungmoon.joo@cc.gatech.edu) 9/23/2014

20

10

“Bug 1” Algorithm

circumnavigate
@ Move to Goal
@ Follow Obstacle & Remember Closest Point L,
© Return to Closest Point*and Continue

Terminate when goal is found or no progress.

*By following the shortest path along the object boundary

S. Joo (sungmoon.joo@cc.gatech.edu) 9/23/2014 21
w ” =
Bug 1” Algorithm
S. Joo (sungmoon.joo@cc.gatech.edu) 9/23/2014 22

11

“Bug 1” Algorithm

D = Distance to Goal
P, = Perimiter of Obstacle I

¢ Bounds on Path Length:
— Minimum (Lower bound)

D
— Maximum (Upper bound)
D+1.5%,P,
S. Joo (sungmoon.joo@cc.gatech.edu) 9/23/2014 23
w ” =
Bug 1” Algorithm
Algorithm:
Complete?
. @ Move to Goal
* YES! g Follow Obstacle & Remember Closest Point
9 Return to Closest Point and Continue
* Proof (Sketch):
— Leave point = closest point on perimeter to Goal (1 point per object)
— Hit point = point achieved after leaving a Leave point
— The Algorithm Terminates
« Each Leave gets closer than Hit Why?
« Each Hit gets closer than Leave /
» Finite number of (Hit, Leave) pairs .
®
— Terminates without finding solution?
* LEAVE = Hit
* Goal is inside Obstacle
S. Joo (sungmoon.joo@cc.gatech.edu) 9/23/2014 24

12

“Bug 1” Algorithm

How Can “Bug 1” Recognize that the goal is not reachable?

If the direction from L; toward
the goal points into the obstacle,
then the goal can't be reached.

S. Joo (sungmoon.joo@cc.gatech.edu) 9/23/2014 25

Improvements?

S. Joo (sungmoon.joo@cc.gatech.edu) 9/23/2014 26

13

Improvements?

m-line: The straight line from the initial configuration to the goal configuration
m-line

S. Joo (sungmoon.joo@cc.gatech.edu) 9/23/2014 27

“Bug 2" Algorithm

@ Move to Goal (following m-line)
@ Follow Obstacle*to m-line (closer to goal)
© Depart on m-line closer to goal, Continue @

Terminate when goal is found or no progress.

*Usually toward the left

S. Joo (sungmoon.joo@cc.gatech.edu) 9/23/2014 28

14

“Bug 2" Algorithm

Init

S. Joo (sungmoon.joo@cc.gatech.edu) 9/23/2014 29

“Bug 2" Algorithm

¢ Complete? YES

+ More Efficient? Sometimes .

S. Joo (sungmoon.joo@cc.gatech.edu) 9/23/2014 30

15

“Bug 2" Algorithm

D = Distance to Goal
P, = Perimiter of Obstacle I

¢ Bounds on Path Length:
— Minimum

D

— Maximum

D +Zi%Pi

n; = # of intersections of the it" obstacle with m-line

S. Joo (sungmoon.joo@cc.gatech.edu) 9/23/2014 31
Comparison of Bug 1 & Bug 2
Bug 2 Wins! Bug 1 Wins!
(€]
(c]
® ®
S. Joo (sungmoon.joo@cc.gatech.edu) 9/23/2014 32

16

Comparison of Bug 1 & Bug 2

¢ Bug1l
— Exhaustive Search
— Evaluates Choices before choosing

¢ Bug?2
— Greedy, Heuristic Algorithm

s Mostly, Bug 2 performs better and Bug 1 is more predictable

« Both are complete, neither is optimal!

e There exist variants for more complex sensors (see Tangent Bug)

S. Joo (sungmoon.joo@cc.gatech.edu) 9/23/2014 33

Bug Algorithms Summary

local environment knowledge & global goal
Robot can tell the distance (smell the goal)

o Otherwise local sensing of walls ..

* Reasonable World
— Finite obstacles in finite space
— Workspace is bounded

S. Joo (sungmoon.joo@cc.gatech.edu) 9/23/2014 34

17

Bug Algorithms Summary

Completeness is Desirable

¢ Completeness does not always require complexity

¢ Bug Algorithms achieve global completeness with local planning
Optimality is Desirable

s Bug Algorithms are not Optimal

35

Bug Algorithms Summary
Algorithm Bug 0 Bug 1 Bug 2
Completeness X 0, Exhaustive 0, Greedy

Better in some cases. But

Characteristic - Safe, Reliable .
worse in other cases

*None of them is optimal

36

Planning Requires Models

¢ Bug algorithms don't plan ahead.

e They are not really motion planners, but “reactive motion strategies”

¢ To plan its actions, a robot needs a (possibly imperfect) predictive model of
the effects of its actions, so that it can choose among several possible

combinations of actions

37

A Useful Notion: Competitive Ratio (CR)

 Bug algorithms are examples of online algorithms where a robot discovers
its environment while moving

» Competitive Ratio: To evaluate algorithms that utilize different information
- An on-line algorithm vs an algorithm that receives more information
- The competitive ratio of an online algorithm A is the maximum over all
possible environments of the ratio of the length of the path computed by A
by the length of the path computed by an optimal offline algorithm B that is
given a model of the environment

Cost of executing the plan that does not know e in advance.

max , -
ecE Cost of executing the plan that knows e in advance

38

19

A Useful Notion: Competitive Ratio (CR)

Lost Cow Problem

a short-sighted cow is following along an infinite fence and wants to find the gate

= W

"

(a)lf the cow is told that the gate is exactly distance 1unit away
CR?

(b)If the cow is told only that the gate is at least distance 1unit away
CR?

Figure from “Planning Algorithms” by Steven M. LaValle

39

20

