CS 4649/7649
Robot Intelligence: Planning

Classical Planning Summary

Sungmoon Joo

School of Interactive Computing
College of Computing
Georgia Institute of Technology

S. Joo (sungmoon.joo@cc.gatech.edu) 9/18/2014
*Slides based in part on Dr. Dana S. Nau and Dr. Mike Stilman’s lecture slides

Final Project

« Voice annotated slide show will be uploaded

» Questions? - schedule, deliverables

S. Joo (sungmoon.joo@cc.gatech.edu) 9/18/2014

Classical Planning

Classical Representation

o DWR example:
- Constant symbols: c1, c2, locl, loc2, r1, r2
- Variable symbols x, y, ...

- Predicates:
- adjacent(/,m) - location /is adjacent to location m
> loc(r,) - robot ris at location /
~ pos(c /), pos(cr) - container cis at location /or on robot 4
> loaded(r) - there is a container on robot r

+ Some terminology
- Atom*: predicate symbol and its arguments
- Ground: contains no variable symbols — e.g. loc(r;1) vs loc(r1, locl)

7

i !
ﬁ .’ c2
r1 | -IZ LI y
a L o —5 ooz o 0
locl loc2
*In logic, literal is an atomic formula (atom) or its negation
S. Joo (sungmoon.joo@cc.gatech.edu) 9/18/2014
Classical Planning
Abstraction
e Real world is absurdly complex, need to approximate
- Only represent what the planner needs to reason about
e State transition system 2 = (5A4,£Y)
- S = {abstract states}
> eg., st;ntes n_1ight include a robot’s location, but not its g
position and orientation
- A = {abstract actions} ye
> e.g., “move robot from loc2 to loc1” may need complex locl
lower-level implementation
- £ = {abstract exogenous events}
—_—

» Not under the agent’s control
-y = state transition function
~ Gives the next state, or possible next states, after an

action or event
> Vi SX (AU E) = Sory: Sx (AU E) — 25

S. Joo (sungmoon.joo@cc.gatech.edu) 9/18/2014

Classical Planning

State

e Use ground atoms to represent both rigid and varying properties of a system =
e To represent a state ¢ of
- s = {all ground atoms of L that are true in o}
- e.g., sl = {pos(ci,locl), loc(r1,locl), pos(c2,loc2), loc(r2,loc2), adjacent(locl,loc2),
adjacent(loc2,locl)}
e S = {all sets of ground atoms of L}
- Call each s € Sa state
¢ Smay contain some “states” that don't actually represent states of =
> e.g., {pos(cl,locl), pos(cl,loc2)}
- Not a big problem if we represent things correctly

=7 =i
A 2
| 2
O 0O O
IER oos
S. Joo (sungmoon.joo@cc.gatech.edu) 9/18/2014 5

Classical Planning

State

e Number of possible states is finite
- Suppose there are ¢ constant symbols
- p predicate symbols, each with A arguments
- Then:
» Number of possible ground atoms is pc*
» Number of possible states is et

&\

S. Joo (sungmoon.joo@cc.gatech.edu) 9/18/2014 6

Classical Planning

Operator vs Action
e Operator

0(Xg,- X)) Name/Head(Parameter list)
Precond: p;, p, -, P Precond: List of literal,p, that must be true for o to be applicable
Effects: e, e,, ..., ey, Effects: List of literal,e; that operator will change

e Action: a ground instance of an operator

take(r,l,c) take(rl,locl,cl)
Precond: loc(r,l), pos(c,l), —loaded(r) :> Precond: loc(rl,locl), pos(cl,locl), —loaded(rl)
Effects: pos(c,r), —pos(c,l),loaded(r) Effects: pos(c1,rl), —pos(cl,locl), loaded(rl)
=7 =i
c2
A | —
 on O 0O O

’ locl loc2

S. Joo (sungmoon.joo@cc.gatech.edu) 9/18/2014 7

Classical Planning

State Transition [) -
{ So 4 5
. 5= (SAEY) 7 . ﬂ@
S = {states}
A = {actions} P @/j-'l'/ ot | .C-'V
E = {exogenous events} \Joc1 locz _loc1 o2
y = state-transition func. move2 | |movel move2 | | movel
Id 5y Y I/' 33'\
« Example: take ﬁ@
S={s0, ..., s5} I I
A = {movel, move2, put, take, load, 7 put 4
unload} Nloct focz J A _loc1 locz
> so write Z = (S5A4Y) e 557 " 550
Y: SXxA— S movel
- see the arrows R
/ p /-3— move2 -
_loc1 loc2 / _locl loc2 /

Dock Worker Robots (DWR) example

S. Joo (sungmoon.joo@cc.gatech.edu) 9/18/2014 8

Classical Planning

Planning Problem

+ Description of X
- Initial state or set of states

» Objective

- Goal state, set of goal states, set of
tasks, “trajectory” of states, objective
function, ...

+ Example
- Initial state = s,
- Goal state = sg

N

So 'a 510

take

P o AT

\ loc1 loc2 S A\ _loc1 loc2)

4 533

{ S0 {
take

N

_loc1 loc2 /' _locl loc2
unload| |load
- N 5
movel
/ p /-3_’ move2 - 7

} \

*_loc1 loc2 v _locl loc2

Dock Worker Robots (DWR) example

S. Joo (sungmoon.joo@cc.gatech.edu)

9/18/2014 9

Classical Planning

Planning Problem

» Description of ¥ ~__ Domain

« Initial state or set of states

* Objective

- Goal state, set of goal states, set of
tasks, “trajectory” of states, objective
function, ...

» Example
- Initial state = s,
- Goal state = s

== % T@%\ 4 ﬂ@ 51
take
7 e
Z Z

/ 5 'd 533

_loc1 loc2 /' locl loc2
unload) |load

X

e 85 'd E
movel

/ p /-3_’ move2 o

_loc1 loc2 v _locl loc2

Dock Worker Robots (DWR) example

S. Joo (sungmoon.joo@cc.gatech.edu)

9/18/2014 10

Classical Planning

Planning Problem

-~

 Description
« [Initial state

» Objective

- Goal state, set of goal states, set of

of 2 ~— Domain

or set of states

take

' S0

L) g
Co e
loc1 oc:

e
move2 movel

put

take

.ﬁ@&.
7 7

y

533

tasks, “trajectory” of states, objective put
function, ... _locl loc2 J _loc1 loc2
unload| |load
+ Example e 55 4 50
- Initial state = s, movel
- Goal state = s
° / p /-3_’ move2 /
_loc1 loc2 v _locl loc2
Dock Worker Robots (DWR) example
S. Joo (sungmoon.joo@cc.gatech.edu) 9/18/2014 11
Classical Planning
== % 4 51
- . take
» Classical plan: a sequence of actions =5
<take, movel, load, move2) ot | -
L £ re P
_\ucl loc2 S A _locl loc2 |
« Policy: partial function from Sinto A movez | | movel move2 | |movel
L.e. State > Action . 5 ' 557

eg

(s4, move2)}

+ Both, if executed starting at s, produce

{(% take), (s, movel), (s, load),

ocl

unload

loc2

load

X

5 ar————= TW ™ e 5
movel
/ p /-3_’ move2 -
_loc1 loc2 v _locl loc2
Dock Worker Robots (DWR) example
S. Joo (sungmoon.joo@cc.gatech.edu) 9/18/2014 12

Classical Planning

Assumptions

¢ AO: Finite system: finitely many states, actions, events

e Al: Fully observable: the controller always Z's current state

e A2: Deterministic: each action has only one outcome

» A3: Static (no exogenous events): no changes but the controller’s actions

e A4: Attainment goals: a set of goal states S,

e A5: Sequential plans: a plan is a linearly ordered sequence of actions (a,, a,, ...

e A6: Implicit time: no time durations; linear sequence of instantaneous states

e A7: Off-line planning: planner doesn’t know the execution status

a,)

S. Joo (sungmoon.joo@cc.gatech.edu) 9/18/2014

13

Classical Planning

¢ Classical planning requires all eight restrictive assumptions

- Offline generation of action sequences for a deterministic, static, finite
system, with complete knowledge, attainment goals, and implicit time

e Reduces to the following problem:
- Given a planning problem P= (2, , S,)
- Find a sequence of actions (a,, a,, ... a,) that produces
a sequence of state transitions (s;, 5, ..., S;) such that s,is in S,.

e This is just path-searching* in a graph
- Nodes = states
- Edges = actions

S. Joo (sungmoon.joo@cc.gatech.edu) 9/18/2014

14

Situation Calculus*

To represent and reason about dynamical worlds
To represent ‘change’, ‘state (implicitly time)’ is introduced.
+ Fluents = Aspects of the world that change
Contains(Suitecase, Laptop, S0)
Working(Robot, ST)

+ Actions are reffied functions of constants. (They can be treated as
constants themselves)

Put(Laptop, Suitcase) Open(Car) Lock(Car)

+ The do function: do(a., ag) — o1

o = action
o = state

*Modern version is different from the original for clarity. Calculus = study about ‘change’.

S. Joo (sungmoon.joo@cc.gatech.edu) 8/26/2014 15

Frame Problem

Effect Axioms (Positive + Negative) describe how a world changes by an action
In(Robot, Hall, s) A Open(rm,s) = In(Robot, rm,do(enter(rm).s))
In(Robot, Hall, s) A Open(rm, s) = —In(Reobot, Hall, do(enter(rm). s))

For each unchanged fluent we add: Frame axioms

Open(Of fice,s) = Open(Of fice, do(enter(rm),s)) /
—Open(Of fice,s) = —Open(Of fice, do(enter(rm),s))
Color(Sky, Blue. s) = Color(Sky, Blue, do(enter(rm), s))
—Color(Sky, Blue, s) = —Color(Sky, Blue, do(enter(rm),s))

How many in total? (for n distinct fluents and m distinct actions)
2?”?; m (Not expenential — but often not practical)

Explicitly specify that all conditions not affected by actions are not changed while
executing that action

S. Joo (sungmoon.joo@cc.gatech.edu) 8/26/2014 16

STRIPS

Represent actions (operators) as three parts:

— PC: set of preconditions
— D: Delete List
— A: Add List

Constants:

A, B.C,Table
IsBlock({A), IsBlock(B)...

Ground Literals:

-

move(B, A, Table)

On(B,A) On(C,Table)
Clear(B) Clear(Table)
S0 . S1
Actions: move(xz.y, z) Delete: Add:
On(B, 4) Czn(B,.Table)
PC:On(z,y) D:On(z,y) A: On(z,z) Clear(Table) Clear(..-i)
Clear(z) Clear(z) Clear(y) Clear(Table)
Clear(z) Clear(Table) Unchanged
Domain Axioms: On(A,C) On(A.C)
)) On(C, Table) On(C, Table)
On(y,2) A On(z2) A (2 # Table) = (1=2) | | Clear(B) Clear(B)
S. Joo (sungmoon.joo@cc.gatech.edu) 8/26/2014 17

Plan-Space Planning

Decompose sets of goals into the
individual goals

Plan for them separately
- Bookkeeping info to detect and
resolve interactions

Produce a partially ordered plan that
retains as much flexibility as possible

The Mars rovers used a temporal planning

extension of this

‘ move(d,a,pl) | | move(c,b,p2) |

‘ move(a,p3,c) ‘ | move(b,p4,d)|

S. Joo (sungmoon.joo@cc.gatech.edu)

9/18/2014

18

Planning Graph
e Idea: Level 0 Level 1 Level 2
- First, solve a relaxed problem Initial Allappli- Alleffects ~ All actions Al effects
~ Each “level” contains all effects state cable of those applicableto of those
of all applicable actions actions actions subsets of actions
» Even though the effects may - levell ~
contradict each other - A
- Next, do a state-space search (/" '\I ,\.:-;;::'I.? |
within the planning "/ & D
+ Example A
Graphplan, IPP, CGP, DGP, LGP, L '/, Q:’?
SGPTGP....] ~33
. J
S. Joo (sungmoon.joo@cc.gatech.edu) 9/18/2014 19
Search
+ Uninformed
- DFS, BFS, IDS
+ Informed
- Best-First-Search (cost-to-go only)
- A* (cost-to-go+cost-paid)
+ Relaxed Planning Graph Heuristic (RPGH)
- FF(regression search on RPGH), HSP (H,~H,)
S. Joo (sungmoon.joo@cc.gatech.edu) 9/18/2014 20

10

HTN Planning: Domain, Problem

e STN planning domain: operators, methods
e STN planning problem: domain, initial state, initial task network

nonprimitive task
method instance
—

primitive task primitive task

N\
| precond | |effects| | precond | |eﬁects|

e Solution: any executable plan
that can be generated by
recursively applying

— methods to
non-primitive tasks

— operators to
primitive tasks

S. Joo (sungmoon.joo@cc.gatech.edu) 9/9/2014 21

Comparison to Classical Planning

e Like:
— Each state of the world is represented by a set of atoms.
— Each action corresponds to a deterministic state transition.

— Terms, literals, operators, actions, plans have same meaning as
classical planning.

¢ Different:

Objective is to perform a set of tasks, not to achieve a set of
goals

Added tasks, methods, task networks
Tasks decompose into subtasks

¢ Constraints

e Task orders
Backtrack if necessary

S. Joo (sungmoon.joo@cc.gatech.edu) 9/9/2014 22

11

Comparison to Classical Planning

object - task

| travel(me,home,park) | home

method @

travel-by-taxiime,home,park)
Pre:
‘/Ioc{me,home}
cash(me) 2 1.5+0.5*dist(home,park)

state
re;
‘/Ioc(me,home]
: X dist{home,park) <4
Backtrack

travel-by-foot(me,home,park)

park
action

| call-taxi{me,home) |®| ride-taxi(me,home, park) @| pay-driver(me) | @
R PR

'
i
‘ f"

oo Precond: ... Precond: ... Precond: ...
Initial Effects: ... Effects: ... Effects: ... Final
state | ! . - - b — I 1 state

loc(me) = home [loc(me) = home loc(me) = park loc(me) = park
cash(me) = 20 cash(me) = 20 cash(me) = 20 cash(me) = 14.5
dist{home,park) =8 | |dist(home,park)=8 dist{(home,park) =8 |dist(home,park) =8
loc(taxi) = elsewhere| |loc(taxi) =home loc(taxi) = park loc(taxi) = park

') owe(me)=5.50 | |owe(me)=0

S. Joo (sungmoon.joo@cc.gatech.edu) 9/9/2014 23

Comparison to Classical Planning

¢ Advantages
— Express things that can't be expressed in classical planning
— Specify(encode) standard ways of solving problems (recipte)

- Otherwise, the planner have to derive recipes repeatedly from *first principle’
every time it solves a problem

- Can speed up by orders of magnitude (exponential > polynomial)

¢ Disadvantages
— Writing/Debugging an HTN domain model can be cumbersome/complicated
> try HTN if
(i) it is important to achieve high performance
(ii) you need more expressive power than classical planners can provide

S. Joo (sungmoon.joo@cc.gatech.edu) 9/9/2014 24

12

Complexity of Planning

Definitions

O
- If there’s an algorithm to solve a problem that runs in polynomial time
(i.e. can be expressed by some polynomial function of the size of the input)

+ NP (Non-deterministic Polynomial)
- If there’s an algorithm to solve a problem for which it is not known that it
runs in polynomial time
- It means there is not necessarily a polynomial-time way to find a solution,
but once you have a solution it only takes polynomial time to verify that it is
correct
- “non-determinism” refers to the outcome of the algorithm

* NP-Complete
- There is a set of problems in NP for which if there’s a polynomial solution
to one there will be a polynomial solution to all the set

S. Joo (sungmoon.joo@cc.gatech.edu) 9/18/2014

25

Complexity of Planning

Definitions

+ PSPACE
- If a problem can be solved by an algorithm that uses an amount of space
polynomial in the size of its input
- It is known that P ¢ PSPACE and NP c PSPACE,
- But, not whether P + PSPACE

» Given a classical planning problem A, does it have a solution?
- PSPACE-complete (much harder than NP-complete)

» Given a classical planning problem A and an integer £, is there a solution of
length & or less?
- PSPACE-complete

S. Joo (sungmoon.joo@cc.gatech.edu) 9/18/2014

26

13

Topics not covered

S. Joo (sungmoon.joo@cc.gatech.edu) 9/18/2014 27

Temporal Planning

If we need an explicit representation of time

\ A || B | Before

* Actions Have Duration ‘ A ‘ B | Meets

Overlaps

-
[B |
“ Contains
A
B
A

e Timed Conditions and Effects

Starts

Ends

A
B Equals

S. Joo (sungmoon.joo@cc.gatech.edu) 9/18/2014 28

14

Scheduling

*« Given:
— Actions to Perform
— Set of Resources to Use
— Constraints on Time

e Goal:
— Allocate time and resources

Reusable resource Consumablc resource

=
require(a;, £ 41}
| = |
require(a2. 7. 42) consumc{a, r, 42)
S. Joo (sungmoon.joo@cc.gatech.edu) 9/18/2014 29

Scheduling vs Planning

* Scheduling
-Decide when and how to perform a given
set of actions
> Time constraints
~ Resource constraints
~ Objective functions
-Typically NP-complete

+ Planning
-Decide what actions to use to achieve some
set of objectives
-Can be much worse than NP-complete

When and how
What to do to do it

Goal mp -D e wap (Scheduiing) mp SC”;:;"GU

S. Joo (sungmoon.joo@cc.gatech.edu) 9/18/2014 30

15

Topics not covered

Many more....

S. Joo (sungmoon.joo@cc.gatech.edu) 9/18/2014

31

16

