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Final Project

• Voice annotated slide show will be uploaded

• Questions? - schedule, deliverables



2

• DWR example:

- Constant symbols: c1, c2, loc1, loc2, r1, r2

- Variable symbols x, y, …

- Predicates:

‣ adjacent(l,m) - location l is adjacent to location m

‣ loc(r,l) - robot r is at location l

‣ pos(c,l), pos(c,r) - container c is at location l or on robot r

‣ loaded(r) - there is a container on robot r
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Classical Representation

Classical Planning

• Some terminology
- Atom*: predicate symbol and its arguments
- Ground: contains no variable symbols – e.g. loc(r,l) vs loc(r1, loc1)

*In logic, literal is an atomic formula (atom) or its negation

• Real world is absurdly complex, need to approximate

- Only represent what the planner needs to reason about

• State transition system Σ = (S,A,E,γ)

- S = {abstract states}

‣ e.g., states might include a robot’s location, but not its 

position and orientation

- A = {abstract actions}

‣ e.g., “move robot from loc2 to loc1” may need complex 

lower-level implementation

- E = {abstract exogenous events}

‣ Not under the agent’s control

- γ = state transition function

‣ Gives the next state, or possible next states, after an 

action or event

‣ γ: S × (A ∪ E) → S or γ: S × (A ∪ E) → 2S
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Abstraction

Classical Planning
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• Use ground atoms to represent both rigid and varying properties of a system Σ

• To represent a state σ of Σ

- s = {all ground atoms of L that are true in σ}

- e.g., s1 = {pos(c1,loc1), loc(r1,loc1), pos(c2,loc2), loc(r2,loc2), adjacent(loc1,loc2),

adjacent(loc2,loc1)}

• S = {all sets of ground atoms of L}

- Call each s ∈ S a state

• S may contain some “states” that don’t actually represent states of Σ

‣ e.g., {pos(c1,loc1), pos(c1,loc2)}

- Not a big problem if we represent things correctly
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State

Classical Planning

• Number of possible states is finite  

- Suppose there are c constant symbols

- p predicate symbols, each with k arguments

- Then:

» Number of possible ground atoms is pck

» Number of possible states is 
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State

Classical Planning
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• Operator

• Action: a ground instance of an operator
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Operator vs Action

Classical Planning

o(x1,…,xk)

Precond: p1, p2, …, ph

Effects: e1, e2, …, eh

Name/Head(Parameter list)

Precond: List of literal,pi,that must be true for o to be applicable

Effects: List of literal,ei that operator will change

take(r,l,c)

Precond: loc(r,l), pos(c,l),￢loaded(r)

Effects: pos(c,r),￢pos(c,l),loaded(r)

take(r1,loc1,c1)

Precond: loc(r1,loc1), pos(c1,loc1), ￢loaded(r1)

Effects: pos(c1,r1),￢pos(c1,loc1), loaded(r1)

9/18/2014S. Joo (sungmoon.joo@cc.gatech.edu) 8

Classical Planning

• Σ = (S,A,E,γ)
S = {states}
A = {actions}
E = {exogenous events}
γ = state-transition func.

• Example:
S = {s0, …, s5}
A = {move1, move2, put, take, load, 

unload}
E = {}
‣ so write Σ = (S,A,γ)

γ: S × A → S
‣ see the arrows

State Transition
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Classical Planning

• Description of Σ

• Initial state or set of states

• Objective
- Goal state, set of goal states, set of 

tasks, “trajectory” of states, objective 
function, …

• Example
- Initial state = s0

- Goal state = s5

Planning Problem
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Classical Planning

• Classical plan: a sequence of actions
〈take, move1, load, move2〉

• Policy: partial function from S into A
i.e. State  Action

e.g. 
{(s0, take), (s1, move1), (s3, load),
(s4, move2)}

• Both, if executed starting at s0, produce 
s3
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• A0: Finite system: finitely many states, actions, events

• A1: Fully observable: the controller always Σ’s current state

• A2: Deterministic: each action has only one outcome

• A3: Static (no exogenous events): no changes but the controller’s actions

• A4: Attainment goals: a set of goal states Sg

• A5: Sequential plans: a plan is a linearly ordered sequence of actions (a1, a2, … an)

• A6: Implicit time: no time durations; linear sequence of instantaneous states

• A7: Off-line planning: planner doesn’t know the execution status
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Classical Planning

Assumptions

• Classical planning requires all eight restrictive assumptions

- Offline generation of action sequences for a deterministic, static, finite 
system, with complete knowledge, attainment goals, and implicit time

• Reduces to the following problem:

- Given a planning problem P = (Σ, s0, Sg)

- Find a sequence of actions (a1, a2, … an) that produces

a sequence of state transitions (s1, s2, …, sn) such that sn is in Sg.

• This is just path-searching* in a graph

- Nodes = states

- Edges = actions
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Classical Planning
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Situation Calculus*

S. Joo (sungmoon.joo@cc.gatech.edu)

To represent and reason about dynamical worlds

*Modern version is different from the original for clarity. Calculus = study about ‘change’. 

To represent ‘change’, ‘state (implicitly time)’ is introduced.

Aspects of the world that change
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Frame Problem

Explicitly specify that all conditions not affected by actions are not changed while 
executing that action

describe how a world changes by an action

Frame axioms
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STRIPS
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Plan-Space Planning

• Decompose sets of goals into the
individual goals

• Plan for them separately
- Bookkeeping info to detect and

resolve interactions

• Produce a partially ordered plan that
retains as much flexibility as possible

• The Mars rovers used a temporal planning
extension of this
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Planning Graph

• Idea:
- First, solve a relaxed problem
‣ Each “level” contains all effects   

of all applicable actions
‣ Even though the effects may 

contradict each other
- Next, do a state-space search 
within the planning

• Example
Graphplan, IPP, CGP, DGP, LGP, PGP, 
SGP,TGP,…
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Search

• Uninformed
- DFS, BFS, IDS

• Informed
- Best-First-Search (cost-to-go only)
- A* (cost-to-go+cost-paid)

• Relaxed Planning Graph Heuristic (RPGH)
- FF(regression search on RPGH), HSP (H0~H2)
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• STN planning domain: operators, methods

• STN planning problem: domain, initial state, initial task network

• Solution: any executable plan
that can be generated by
recursively applying 

– methods to
non-primitive tasks

– operators to
primitive tasks

nonprimitive task

precond

method instance

s0 precond effects precond effectss1 s2

primitive taskprimitive task

operator instance operator instance

HTN Planning: Domain, Problem

9/9/2014S. Joo (sungmoon.joo@cc.gatech.edu) 22

Comparison to Classical Planning

• Like :

– Each state of the world is represented by a set of atoms.

– Each action corresponds to a deterministic state transition.

– Terms, literals, operators, actions, plans have same meaning as 
classical planning.

• Different:

– Objective is to perform a set of tasks, not to achieve a set of 
goals

– Added tasks, methods, task networks

– Tasks decompose into subtasks

• Constraints

• Task orders

– Backtrack if necessary
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Comparison to Classical Planning

state

action

object - task

method
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• Advantages

– Express things that can’t be expressed in classical planning

– Specify(encode) standard ways of solving problems (recipte)

 Otherwise, the planner have to derive recipes repeatedly from ‘first principle’ 
every time it solves a problem

 Can speed up by orders of magnitude (exponential  polynomial)

• Disadvantages

– Writing/Debugging an HTN domain model can be cumbersome/complicated

 try HTN if 

(i) it is important to achieve high performance

(ii) you need more expressive power than classical planners can provide

Comparison to Classical Planning
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Complexity of Planning

• P
- If there’s an algorithm to solve a problem that runs in polynomial time
(i.e. can be expressed by some polynomial function of the size of the input)

• NP (Non-deterministic Polynomial)
- If there’s an algorithm to solve a problem for which it is not known that it 
runs in polynomial time
- It means there is not necessarily a polynomial-time way to find a solution, 

but once you have a solution it only takes polynomial time to verify that it is 

correct

- “non-determinism” refers to the outcome of the algorithm

• NP-Complete

- There is a set of problems in NP for which if there’s a polynomial solution 

to one there will be a polynomial solution to all the set 

Definitions 
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Complexity of Planning

• PSPACE

- If a problem can be solved by an algorithm that uses an amount of space

polynomial in the size of its input

- It is known that P ⊂ PSPACE and NP ⊂ PSPACE,

- But, not whether P ≠ PSPACE

Definitions 

• Given a classical planning problem A, does it have a solution?
- PSPACE-complete (much harder than NP-complete)

• Given a classical planning problem A and an integer k, is there a solution of
length k or less?
- PSPACE-complete
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Topics not covered
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Temporal Planning

If we need an explicit representation of time
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Scheduling
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Scheduling vs Planning

• Scheduling
-Decide when and how to perform a given 
set of actions

‣ Time constraints
‣ Resource constraints
‣ Objective functions

-Typically NP-complete

• Planning
-Decide what actions to use to achieve some 
set of objectives
-Can be much worse than NP-complete
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Topics not covered

Many more….


