Heuristics & Search

Sungmoon Joo

School of Interactive Computing
College of Computing
Georgia Institute of Technology

Course Info.

- **Course Website:** joosm.github.io/RIP2014
- **Course Wiki:** github.com/RIP2014/RIP2014Wiki/wiki
 - add your contact info, start grouping/filling in project ideas, etc.
 - github invitation sent (if you didn’t get one, let me know)
 - S/W tutorial

- **RIM seminar:** http://www.robotics.gatech.edu/hg/item/318301
 - Steven M. LaValle – Planning expert, Virtual Reality
 - Friday, September 5, 2014
 12:00~13:00
 - Marcus Nanotechnology Building
State Space vs. Plan Space vs. Graph Space

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>State Space (60s -)</th>
<th>Plan Space (70s -)</th>
<th>Graph Space (90s -)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Progression</td>
<td></td>
<td>Iterates</td>
<td></td>
</tr>
<tr>
<td>Regression</td>
<td></td>
<td>Graph Building</td>
<td></td>
</tr>
<tr>
<td>Nodes</td>
<td>World States</td>
<td>Partial Plans</td>
<td>Graph Levels</td>
</tr>
<tr>
<td>Transitions</td>
<td>Actions</td>
<td>Plan Refinement</td>
<td>Sets of Actions</td>
</tr>
<tr>
<td></td>
<td>- Move(x,y,z)</td>
<td>Operations</td>
<td>- Constraint Coding</td>
</tr>
<tr>
<td></td>
<td>- Load(x,y)</td>
<td>- Adding Steps</td>
<td>- Mutual Exclusion</td>
</tr>
<tr>
<td></td>
<td>- Open(r)</td>
<td>- Promotion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Demotion</td>
<td></td>
</tr>
</tbody>
</table>

Search from Initial State to Goal

Nodes and Cells Represent States

- **Grid**
 - Actions – Move to Neighbor Cell

- **Graph**
 - Actions – Move to Adjacent Node
Uninformed Search

Subtitle: We don't know anything about the domain.

Uninformed Search: Depth First (DFS)

Moving along one branch
Uninformed Search: Depth First (DFS)

Moving along one branch

Take a look at the QUEUE

Expand until a node on the terminal level appears
Uninformed Search: Depth First (DFS)

Take a look at the QUEUE

Check the terminal nodes
If not the goal, delete them and their parent nodes

Uninformed Search: Depth First (DFS)

Take a look at the QUEUE

Explore another branch
Uninformed Search: Depth First (DFS)

Take a look at the QUEUE

Repeat until you reach the goal

Advantages?
Disadvantages?

S. Joo (sungmoon.joo@cc.gatech.edu) 9/4/2014
Uninformed Search: Breadth First (BFS)

Visiting every branch

S. Joo (sungmoon.joo@cc.gatech.edu) 9/4/2014 13
Uninformed Search: Breadth First (BFS)

Visiting every branch

Take a look at the QUEUE

Explore every branch, level by level
Take a look at the QUEUE

Every node on the given level is checked before any node on a later level is checked!
Uninformed Search: Breadth First (BFS)

Advantages?
Disadvantages?

Uninformed Search: Iterative Deepening (IDS)

Korf ’85
Stickel & Tyson ’85

DFS, level by level

DFS on level 1

...
Uninformed Search: Iterative Deepening (IDS)

DFS, level by level

DFS on level 2

DFS on level 3

Richard Korf

Korf '85
Stickel & Tyson '85

11
12
13
14
21
22
23
24
31
32
33
34

S. Joo (sungmoon.joo@cc.gatech.edu) 9/4/2014 21

S. Joo (sungmoon.joo@cc.gatech.edu) 9/4/2014 22
Uninformed Search: Iterative Deepening (IDS)

What is the difference between IDS and BFS?
- Much less memory at any given time
 - first checked in the same order they would be checked in a breadth-first-search
 - nodes are deleted as the search progresses

Usually better than plain DFS
when memory is not an issue

Main drawback
Redundancy

Efficiency in Planning

- Planning Efficiency: speed of a planner

Smart robots make good decisions.
Smarter robots make good decisions fast!
We like smart robots
How can we make our robots smarter?
Informed or Heuristic Search

Subtitle: We know which choices might be GOOD

"Magic" Heuristic function: \(h(s) = \text{"cost to go"} \)

Informed Search: Best First Search

- \(h(s) \) - Tells us the expected cost of achieving the goal along a path
- Best First Search chooses the least heuristic cost node
Informed Search: Best First Search

- OPEN = [initial state] CLOSED = []
- While OPEN is not empty do
 1. Remove the best node from OPEN, call it n, add it to CLOSED.
 2. If n is the goal state, backtrace path to n (through recorded parents) and return path.
 3. Create n's successors.
 4. For each successor do:
 a. If it is not in CLOSED and it is not in OPEN: evaluate it, add it to OPEN, and record its parent.
 b. Otherwise, if this new path is better than previous one, change its recorded parent.
 i. If it is not in OPEN add it to OPEN.
 ii. Otherwise, adjust its priority in OPEN using this new evaluation.

done
Properties of Heuristics: \(h(s) \)

Informed
- Does estimate lead to the goal?
- Accuracy of heuristic

Admissible
- \(h(s) \leq \text{true "cost to go"} \)
- Is Best-First Search with Admissible \(h(s) \) optimal? NO! Why?

Informed Search: A* Search

Value = Cost + Cost To Go

\[
f(n) = g(n) + h(n)
\]

Cost you already paid to reach node \(n \)
Cost you have to pay to reach the goal from \(n \)

![A* Search Diagram](image)
Informed Search: A* Search

Value = Cost + Cost To Go

\[f(n) = g(n) + h(n) \]

Variants of Heuristic Search

- Best-First
- A*

- Weighted A*
 - \[H(s) = \text{Cost}(s) + W \times h(s) \]
 - Not admissible, but often works well

- Hill Climbing
 - Local Best-First Search
 - When stuck, randomly chooses new starting point

- “Enforced” Hill Climbing
 - Local Best-First Search
 - When stuck, perform breadth-first search until a better state is found