CS 4649/7649 RIP
Robot Intelligence: Planning

Classical Planning

Sungmoon Joo

School of Interactive Computing
College of Computing
Georgia Institute of Technology

Course Info.

• Course Website: joosm.github.io/RIP2014
• Course Wiki: Teaming & Collaboration. Under construction
• Email me(sungmoon.joo@cc.gatech.edu) to introduce yourself
• Issues with registration?
What is Planning?

Planning: “devising a plan of action to achieve one’s goal” (Russel & Norvig)

Given:
- States
- Actions
- Initial State and Goal State
- Constraints

Task 1: Find a sequence of actions that take you from Init. to Goal
Task 2: Find actions that take you from any state to Goal
Task 3: Decide the best action to take now in order to improve your odds of reaching Goal
Task 4: Find a continuous path (in state space) that takes you from Init. to Goal

DARPA’s Assessment

...
State of the Art

First Representation: Predicate Logic

Unless, some how, we can describe the world, we cannot devise a plan.

Statement \rightarrow Predicate

(Unary) Predicate: $P(x)$
Introduce a (functional) symbol(P) for the predicate, and put the subject(x) as an argument to the functional symbol.

N-ary predicate is defined similarly

Examples:
- x is happy \rightarrow Happy(x): Unary predicate
- The suitcase contains a bomb \rightarrow Contains(Suitcase, Bomb): Binary predicate
- x is less than y \rightarrow LessThan(x,y): Binary predicate
- $P(x_1,x_2,\ldots,x_n)$: n-ary predicate

*Proposition can be considered as a 0-nary predicate.
*Predicate Logic ~ First Order Logic(FOL)
First Representation: Predicate Logic

Objects (Constants): $a, 123, house, mike, robot, suitcase$

Variables: $x, y, z...$

Relations (Predicates): $LessThan, Contains, Parent, Happy$

Connectives: $\neg, \lor, \land, \Rightarrow$

Any expression is either true or false:

$LessThan(1, 2)$
$\neg Contains(Suitcase, Bomb)$

Truth Table

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>$\neg A$</th>
<th>$A \land B$</th>
<th>$A \Rightarrow B$</th>
<th>$\neg A \lor B$</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
Situation Calculus*

To represent and reason about dynamical worlds
To represent ‘change’, ‘state (implicitly time)’ is introduced.

- **Fluents** = Aspects of the world that change

 \[\text{Contains}(\text{Suitcase, Laptop, S0})\]

 \[\text{Working}(\text{Robot, S7})\]

- **Actions** are reified functions of constants. (They can be treated as constants themselves)

 \[\text{Put}(\text{Laptop, Suitcase})\]

 \[\text{Open}(\text{Car})\]

 \[\text{Lock}(\text{Car})\]

- **The do function:**

 \[do(\alpha, \sigma_0) \rightarrow \sigma_1\]

 \[\alpha = \text{action}\]

 \[\sigma = \text{state}\]

*Modern version is different from the original for clarity. Calculus = study about ‘change’.

Situation Calculus

- Effect axioms describe how a world changes by an action

- **Effect Axioms (Positive + Negative):** Specify the outcome of an action

 \[\text{In}(\text{Robot, Hall, s}) \land \text{Open}(\text{rm, s}) \Rightarrow \text{In}(\text{Robot, rm, do(enter(rm), s)})\]

 \[\text{In}(\text{Robot, Hall, s}) \land \text{Open}(\text{rm, s}) = \neg\text{In}(\text{Robot, Hall, do(enter(rm), s)})\]

\[
S1 = do(\text{enter(Class), S0})
\]

\[
\text{In}(\text{Robot, Class, S1}) \quad \neg\text{In}(\text{Robot, Hall, S1})
\]

\[
\text{In}(\text{Robot, Hall, S0})
\]

\[
\text{Open}(\text{Class, S0})
\]

\[
\text{Open}(\text{Office, S0})
\]

\[
S2 = do(\text{enter(Office), S0})
\]

\[
\text{In}(\text{Robot, Office, S2}) \quad \neg\text{In}(\text{Robot, Hall, S2})
\]

Motivational Detour: Implicit State Space

How many distinct states can we describe with \(n \) fluents?

\[
\begin{align*}
\text{In(Robot, Class, S1)} \\
\neg\text{In(Robot, Hall, S1)} \\
\text{Open(Door, Class, S1)} \\
\neg\text{In(Briefcase, Laptop, S1)}
\end{align*}
\]

S1

Implicit State Space Representation

How many distinct states can we describe with \(n \) fluents?

- One fluent: 2 states
- Two fluents: \(2 \times 2 = 4 \) states
- \(n \) fluents = \(2^n \) states

<table>
<thead>
<tr>
<th>Open(Door, s)</th>
<th>Hungry(Robot, s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

Number of states is exponential in number of fluents.

Recall that fluents are themselves propositions over constants!
In(Robot, rm, s) = Educated(Students, rm, do(teach(rm), s))

\[S1 = do(enter(Class), S0) \]
\[S0 \]
\[In(Robot, Class, S1) \]
\[\neg In(Robot, Hall, S1) \]

\[S1 \]
\[S2 = do(enter(Office), S0) \]
\[S0 \]
\[In(Robot, Hall, S0) \]
\[Open(Class, S0) \]
\[Open(Office, S0) \]

\[S2 \]
\[S3 = do(enter(Office), S0) \]
\[S0 \]
\[In(Robot, Hall, S0) \]
\[Open(Class, S0) \]
\[Open(Office, S0) \]

\[S1 \]
\[S3 = do(teach, Class, do(enter, Class, S0)) \]
\[Educated(Students, S3) \]

Warning: notations are abused...
Situation Calculus: Problems?

- Effect Axioms (Positive + Negative)
 \[\text{In(Robot, Hall, s)} \land \text{Open(rm, s)} \Rightarrow \text{In(Robot, rm, do(enter(rm), s))} \]
 \[\text{In(Robot, Hall, s)} \land \text{Open(rm, s)} \Rightarrow \neg\text{In(Robot, Hall, do(enter(rm), s))} \]

\[S1 = \text{do(enter(Class), S0)} \]
\[S0 \rightarrow S1 \]
\[\neg\text{Open(Office, S0)} \]
\[S2 = \text{do(enter, Office, S0)} \]

Warning: notations are abused...

Situation Calculus: Frame Problem*

- Effect Axioms (Positive + Negative)
 \[\text{In(Robot, Hall, s)} \land \text{Open(rm, s)} \Rightarrow \text{In(Robot, rm, do(enter(rm), s))} \]
 \[\text{In(Robot, Hall, s)} \land \text{Open(rm, s)} \Rightarrow \neg\text{In(Robot, Hall, do(enter(rm), s))} \]

\[S1 = \text{do(enter, Class, S0)} \]
\[S0 \rightarrow S1 \]
\[\neg\text{Open(Office, S0)} \]
\[\text{Color(Sky, Blue)} \]
\[S2 = \text{do(enter, Office, S0)} \]

\[\neg\text{In(Robot, Hall, S1)} \]

*First recognized by McCarthy & Hayes (1969)

Specifying only which conditions are changed by the actions do not allow, in logic, to conclude that all other conditions are not changed.
Frame Axioms

Effect Axioms (Positive + Negative)

\[\text{In(Robot, Hall, s)} \land \text{Open(rm, s)} = \text{In(Robot, rm, do(enter(rm), s))} \]
\[\text{In(Robot, Hall, s)} \land \text{Open(rm, s)} = \neg \text{In(Robot, Hall, do(enter(rm), s))} \]

For each unchanged fluent we add:

\[\text{Open(Office, s)} = \text{Open(Office, do(enter(rm), s))} \]
\[\neg \text{Open(Office, s)} = \neg \text{Open(Office, do(enter(rm), s))} \]
\[\text{Color(Sky, Blue, s)} = \text{Color(Sky, Blue, do(enter(rm), s))} \]
\[\neg \text{Color(Sky, Blue, s)} = \neg \text{Color(Sky, Blue, do(enter(rm), s))} \]

How many in total? (for \(n \) distinct fluents and \(m \) distinct actions)

\[2nm \]

(Not exponential – but often not practical)

Explicitly specify that all conditions not affected by actions are not changed while executing that action.

Frame Problem

- (Representational) Frame Problem

 Significant because the real world has very many fluents

 Size of axioms: \(O(mn) \)

- Inferential Frame Problem

 Problem of projecting forward the results of a \(t \) step of actions in time \(O(nt) \)

- Origin of the Name: “Frame Problem”

 (i) Frame of Reference in Physics, which is assumed stationary wrt which motion is measured.

 (ii) Frames of a movie, in which normally most of the background stays constant while changes occur in the foreground
Ramification Problem

What are the ramifications of an action?
- The robot entered the room.
- Its sensors are now in the room.
- The object it was carrying is now in the room.
- The robot is visible to you.
 ➔ the indirect consequences of an action
Do we really want to say all that in an effect axiom?

How does this relate to the Frame Problem?
 ➔ Ramification Problem = The frame problem in the context of actions with indirect effects

A solution: STRIPS

Shakey @ Stanford

https://www.youtube.com/watch?v=qXdn6ynwpil