CS 4649/7649
Robot Intelligence: Planning

Classical Planning Summary

Sungmoon Joo

School of Interactive Computing
College of Computing
Georgia Institute of Technology

Final Project

• Voice annotated slide show will be uploaded
• Questions? - schedule, deliverables
Classical Planning

Classical Representation

- **DWR example:**
 - **Constant symbols:** c1, c2, loc1, loc2, r1, r2
 - **Variable symbols:** x, y, ...
 - **Predicates:**
 - adjacent(l,m) - location l is adjacent to location m
 - loc(r,l) - robot r is at location l
 - pos(c,l), pos(c,r) - container c is at location l or on robot r
 - loaded(r) - there is a container on robot r

- Some terminology
 - **Atom**: predicate symbol and its arguments
 - **Ground**: contains no variable symbols – e.g. loc(r,l) vs loc(r1, loc1)

In logic, literal is an atomic formula (atom) or its negation

Classical Planning

Abstraction

- Real world is absurdly complex, need to approximate
 - Only represent what the planner needs to reason about

- **State transition system** $\Sigma = (S, A, E, \gamma)$
 - $S = \{\text{abstract states}\}$
 - e.g., states might include a robot's location, but not its position and orientation
 - $A = \{\text{abstract actions}\}$
 - e.g., "move robot from loc2 to loc1" may need complex lower-level implementation
 - $E = \{\text{abstract exogenous events}\}$
 - Not under the agent's control
 - $\gamma = \text{state transition function}$
 - Gives the next state, or possible next states, after an action or event
 - $\gamma: S \times (A \cup E) \rightarrow S$ or $\gamma: S \times (A \cup E) \rightarrow 2^S$
Use ground atoms to represent both rigid and varying properties of a system Σ

To represent a state σ of Σ
- $s = \{\text{all ground atoms of } L \text{ that are true in } \sigma\}$
- e.g., $s_1 = \{\text{pos}(c_1,\text{loc}_1), \text{loc}(r_1,\text{loc}_1), \text{pos}(c_2,\text{loc}_2), \text{loc}(r_2,\text{loc}_2), \text{adjacent}(\text{loc}_1,\text{loc}_2), \text{adjacent}(\text{loc}_2,\text{loc}_1)\}$

$S = \{\text{all sets of ground atoms of } L\}$
- Call each $s \in S$ a state
- S may contain some "states" that don't actually represent states of Σ
 - e.g., $\{\text{pos}(c_1,\text{loc}_1), \text{pos}(c_1,\text{loc}_2)\}$
 - Not a big problem if we represent things correctly

Number of possible states is finite
- Suppose there are c constant symbols
- p predicate symbols, each with k arguments
- Then:
 - Number of possible ground atoms is p^c
 - Number of possible states is 2^{pc}
Classical Planning

Operator vs Action

- Operator
 \(\sigma(x_1, ..., x_k) \)
 - Precond: \(p_1, p_2, ..., p_h \)
 - Effects: \(e_1, e_2, ..., e_h \)

- Action: a ground instance of an operator
 \(\text{take}(r, c) \)
 - Precond: \(\text{loc}(r, c), \text{pos}(c, c), \neg \text{loaded}(r) \)
 - Effects: \(\text{pos}(c, r), \neg \text{pos}(c, c), \text{loaded}(r) \)

Classical Planning

State Transition

- \(\Sigma = (S, A, E, \gamma) \)
 - \(S = \{ \text{states} \} \)
 - \(A = \{ \text{actions} \} \)
 - \(E = \{ \text{exogenous events} \} \)
 - \(\gamma = \text{state-transition func.} \)

- Example:
 - \(S = \{ s_0, ..., s_5 \} \)
 - \(A = \{ \text{move1, move2, put, take, load, unload} \} \)
 - \(E = \{ \} \)
 - so write \(\Sigma = (S, A, \gamma) \)
 - \(\gamma: S \times A \rightarrow S \)
 - see the arrows

Dock Worker Robots (DWR) example
Classical Planning

Planning Problem

- Description of Σ
- Initial state or set of states
- Objective
 - Goal state, set of goal states, set of tasks, “trajectory” of states, objective function, ...
- Example
 - Initial state = s_0
 - Goal state = s_5

Dock Worker Robots (DWR) example
Classical Planning

Planning Problem

- Description of Σ
- Initial state or set of states
- Objective
 - Goal state, set of goal states, set of tasks, “trajectory” of states, objective function ...
- Example
 - Initial state = s_0
 - Goal state = s_5

Classical Plan: a sequence of actions

\langle \text{take}, \text{move1}, \text{load}, \text{move2} \rangle

Policy: partial function from S into A

\text{i.e. State } \rightarrow \text{Action}

e.g.
\{(s_0, \text{take}), (s_1, \text{move1}), (s_3, \text{load}), (s_4, \text{move2})\}

- Both, if executed starting at s_0, produce s_3
Classical Planning

Assumptions

- A0: Finite system: finitely many states, actions, events
- A1: Fully observable: the controller always Σ's current state
- A2: Deterministic: each action has only one outcome
- A3: Static (no exogenous events): no changes but the controller's actions
- A4: Attainment goals: a set of goal states S_g
- A5: Sequential plans: a plan is a linearly ordered sequence of actions ($a_1, a_2, ..., a_n$)
- A6: Implicit time: no time durations; linear sequence of instantaneous states
- A7: Off-line planning: planner doesn't know the execution status

Classical Planning

- Classical planning requires all eight restrictive assumptions
 - Offline generation of action sequences for a deterministic, static, finite system, with complete knowledge, attainment goals, and implicit time

- Reduces to the following problem:
 - Given a planning problem $P = (Σ, s_0, S_g)$
 - Find a sequence of actions ($a_1, a_2, ..., a_n$) that produces
 a sequence of state transitions ($s_1, s_2, ..., s_n$) such that s_n is in S_g

- This is just path-searching* in a graph
 - Nodes = states
 - Edges = actions
Situation Calculus*

To represent and reason about dynamical worlds
To represent ‘change’, ‘state (implicitly time)’ is introduced.

- **Fluents** = Aspects of the world that change

 \[\text{Contains}(Suitcase, Laptop, S0) \]

 \[\text{Working}(Robot, S7) \]

- **Actions** are reified functions of constants. (They can be treated as constants themselves)

 \[\text{Put}(Laptop, Suitcase) \quad \text{Open}(Car) \quad \text{Lock}(Car) \]

- The do function:

 \[
 do(\alpha, \sigma_0) \rightarrow \sigma_1 \\
 \alpha = \text{action} \\
 \sigma = \text{state}
 \]

*Modern version is different from the original for clarity. Calculus = study about ‘change’.

Frame Problem

Effect Axioms (Positive + Negative) describe how a world changes by an action

\[\text{In}(Robot, Hall, s) \land \text{Open}(rm, s) = \text{In}(Robot, rm, do(\text{enter}(rm), s)) \]

\[\text{In}(Robot, Hall, s) \land \text{Open}(rm, s) = \neg \text{In}(Robot, Hall, do(\text{enter}(rm), s)) \]

For each unchanged fluent we add:

\[\text{Open}(Office, s) \Rightarrow \text{Open}(Office, do(\text{enter}(rm), s)) \]

\[\neg \text{Open}(Office, s) \Rightarrow \neg \text{Open}(Office, do(\text{enter}(rm), s)) \]

\[\text{Color}(Sky, Blue, s) \Rightarrow \text{Color}(Sky, Blue, do(\text{enter}(rm), s)) \]

\[\neg \text{Color}(Sky, Blue, s) \Rightarrow \neg \text{Color}(Sky, Blue, do(\text{enter}(rm), s)) \]

How many in total? (for n distinct fluents and m distinct actions)

\[2nm \]

(Not exponential – but often not practical)

Explicitly specify that all conditions not affected by actions are not changed while executing that action
STRIPS

- Represent actions (operators) as three parts:
 - PC: set of preconditions
 - D: Delete List
 - A: Add List

Constants:

\[A, B, C, Table \]
\[IsBlock(A), IsBlock(B) \ldots \]

Ground Literals:

\[On(B, A), On(C, Table) \]
\[Clear(B), Clear(Table) \]

Actions:

\[move(x, y, z) \]

PC:

\[On(x, y) \]
\[Clear(x) \]
\[On(z, z) \]
\[Clear(z) \]

D:

\[On(x, y) \]
\[Clear(x) \]
\[Clear(y) \]

A:

\[On(x, z) \]
\[Clear(y) \]

Domain Axioms:

\[On(y, x) \land On(z, x) \land (x \neq Table) \implies (y = z) \]

Plan-Space Planning

- Decompose sets of goals into the individual goals
- Plan for them separately
 - Bookkeeping info to detect and resolve interactions
- Produce a partially ordered plan that retains as much flexibility as possible
- The Mars rovers used a temporal planning extension of this
Planning Graph

- Idea:
 - First, solve a relaxed problem
 - Each "level" contains all effects of all applicable actions
 - Even though the effects may contradict each other
 - Next, do a state-space search within the planning

Example
Graphplan, IPP, CGP, DGP, LGP, SGP, TGP, ...

Search

- Uninformed
 - DFS, BFS, IDS

- Informed
 - Best-First-Search (cost-to-go only)
 - A* (cost-to-go+cost-paid)

- Relaxed Planning Graph Heuristic (RPGH)
 - FF(regression search on RPGH), HSP (H_0~H_2)
HTN Planning: Domain, Problem

- STN planning domain: operators, methods
- STN planning problem: domain, initial state, initial task network

- Solution: any executable plan that can be generated by recursively applying
 - methods to non-primitive tasks
 - operators to primitive tasks

Comparison to Classical Planning

- Like:
 - Each state of the world is represented by a set of atoms.
 - Each action corresponds to a deterministic state transition.
 - Terms, literals, operators, actions, plans have same meaning as classical planning.

- Different:
 - Objective is to perform a set of tasks, not to achieve a set of goals
 - Added tasks, methods, task networks
 - Tasks decompose into subtasks
 - Constraints
 - Task orders
 - Backtrack if necessary
Comparison to Classical Planning

Advantages
- Express things that can’t be expressed in classical planning
- Specify(encode) standard ways of solving problems (recipe)
 → Otherwise, the planner have to derive recipes repeatedly from ‘first principle’
 every time it solves a problem
 → Can speed up by orders of magnitude (exponential → polynomial)

Disadvantages
- Writing/Debugging an HTN domain model can be cumbersome/complicated
 → try HTN if
 (i) it is important to achieve high performance
 (ii) you need more expressive power than classical planners can provide
Complexity of Planning

Definitions

- **P** - If there's an algorithm to solve a problem that runs in polynomial time (i.e. can be expressed by some polynomial function of the size of the input)

- **NP (Non-deterministic Polynomial)**
 - If there's an algorithm to solve a problem for which it is not known that it runs in polynomial time
 - It means there is not necessarily a polynomial-time way to find a solution, but once you have a solution it only takes polynomial time to verify that it is correct
 - “non-determinism” refers to the outcome of the algorithm

- **NP-Complete**
 - There is a set of problems in NP for which if there's a polynomial solution to one there will be a polynomial solution to all the set

PSPACE - If a problem can be solved by an algorithm that uses an amount of space polynomial in the size of its input
- It is known that P ⊂ PSPACE and NP ⊂ PSPACE,
- But, not whether P ≠ PSPACE

- Given a classical planning problem A, does it have a solution?
 - PSPACE-complete (much harder than NP-complete)
- Given a classical planning problem A and an integer k, is there a solution of length k or less?
 - PSPACE-complete
Temporal Planning

If we need an explicit representation of time

- Actions Have Duration
- Timed Conditions and Effects

<table>
<thead>
<tr>
<th>Activity</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Before</td>
</tr>
<tr>
<td>B</td>
<td>Meets</td>
</tr>
<tr>
<td>A</td>
<td>Overlaps</td>
</tr>
<tr>
<td>B</td>
<td>Contains</td>
</tr>
<tr>
<td>A</td>
<td>Starts</td>
</tr>
<tr>
<td>B</td>
<td>Ends</td>
</tr>
<tr>
<td>A</td>
<td>Equals</td>
</tr>
<tr>
<td>B</td>
<td></td>
</tr>
</tbody>
</table>
Scheduling

- Given:
 - Actions to Perform
 - Set of Resources to Use
 - Constraints on Time

- Goal:
 - Allocate time and resources

Scheduling vs Planning

- Scheduling
 - Decide when and how to perform a given set of actions
 - Time constraints
 - Resource constraints
 - Objective functions
 - Typically NP-complete

- Planning
 - Decide what actions to use to achieve some set of objectives
 - Can be much worse than NP-complete
Topics not covered

Many more....